Open Access
Issue
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
Article Number 01355
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202533701355
Published online 07 October 2025
  1. ATLAS Collaboration, ATLAS HL-LHC Computing Conceptual Design Report. CERN-LHCC-2020-015 (2020). cds.cern.ch/record/2729668 [Google Scholar]
  2. ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider. JINST 3 S08003 (2008). doi.org/10.1088/1748-0221/3/08/S08003 [Google Scholar]
  3. ATLAS Collaboration, ATLAS Software and Computing HL-LHC Roadmap. CERN-LHCC-2022-005 (2022). cds.cern.ch/record/2802918 [Google Scholar]
  4. ATLAS Collaboration, Software and computing for Run 3 of the ATLAS experiment at the LHC. Eur. Phys. J. C 85, 234 (2025). doi.org/10.1140/epjc/s10052-024-13701-w [Google Scholar]
  5. ATLAS Collaboration, AtlFast3: The Next Generation of Fast Simulation in ATLAS. Comput Softw Big Sci 6, 7 (2022). doi.org/10.1007/s41781-021-00079-7 [CrossRef] [Google Scholar]
  6. J. Allison et al., Recent Developments in Geant4. Nucl. Instrum. Meth. A 835, 186-225 (2016). doi.org/10.1016/j.nima.2016.06.125 [CrossRef] [Google Scholar]
  7. J. Allison et al., Geant4 Developments and Applications. IEEE Trans. Nucl. Sci. 53, 270-278 (2006). dx.doi.org/10.1109/TNS.2006.869826 [Google Scholar]
  8. S. Agostinelli et al., Geant4 - A Simulation Toolkit. Nucl. Instrum. Meth. A 506, 250-303 (2003). dx.doi.org/10.1016/S0168-9002(03)01368-8 [CrossRef] [Google Scholar]
  9. J. F. Beirer, Novel Approaches to the Fast Simulation of the ATLAS Calorimeter and Performance Studies of Track-Assisted Reclustered Jets for Searches for Resonant X S H bb¯WW∗ Production with the ATLAS Detector (2023). dx.doi.org/10.53846/goediss-9900 [Google Scholar]
  10. ATLAS Collaboration, Fast simulation of the ATLAS calorimeter system with Generative Adversarial Networks. ATL-SOFT-PUB-2020-006 (2020). cds.cern.ch/record/2746032 [Google Scholar]
  11. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Nets. Advances in Neural Information Processing Systems 3, 11 (2014). dx.doi.org/10.1145/3422622 [Google Scholar]
  12. ATLAS Collaboration, ATLAS-SIM-2023-004. atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2023-004 [Google Scholar]
  13. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved Training of Wasserstein GANs. arXiv:1704.00028 (2017). doi.org/10.48550/arXiv.1704.00028 [Google Scholar]
  14. ATLAS Collaboration, ATLAS-SIM-2023-005. atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2023-005 [Google Scholar]
  15. C. Krause et al., CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation. arXiv:2410.21611 (2024). doi.org/10.48550/arXiv.2410.21611 to be published in Rep. Prog. Phys. [Google Scholar]
  16. W. Peebles, S. Xie, Scalable Diffusion Models with Transformers. arXiv:2212.09748 (2022). doi.org/10.48550/arXiv.2212.09748 [Google Scholar]
  17. F. Ernst, L. Favaro, C. Krause, T. Plehn, D. Shih, Normalizing Flows for High-Dimensional Detector Simulations. SciPost Phys. 18, 081 (2025). doi.org/10.21468/SciPostPhys.18.3.081 [Google Scholar]
  18. ATLAS Collaboration, ATLAS-SIMU-2024-10. atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIMU-2024-10 [Google Scholar]
  19. batchdocs.web.cern.ch (accessed 10 February 2025) [Google Scholar]
  20. home.cern/science/computing/grid (accessed 20 February 2025) [Google Scholar]
  21. Singularity Developers, Singularity (2021). doi.org/10.5281/zenodo.1310023 (accessed 10 February 2025) [Google Scholar]
  22. developer.nvidia.com/cuda-zone (accessed 10 February 2025) [Google Scholar]
  23. developer.nvidia.com/cudnn (accessed 10 February 2025) [Google Scholar]
  24. leonardo-supercomputer.cineca.eu (accessed 10 February 2025) [Google Scholar]
  25. confluence.infn.it/spaces/TD/pages/40665319/6+-+The+HPC+cluster (accessed 10 February 2025) [Google Scholar]
  26. top500.org/lists/top500/2025/06 (accessed 21 July 2025) [Google Scholar]
  27. cnaf.infn.it/en/wlcg-tier-1-data-center-en (accessed 10 February 2025) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.