Open Access
Issue
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
Article Number 01359
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202533701359
Published online 07 October 2025
  1. I. Zurbano Fernandez et al., High-Luminosity Large Hadron Collider (HL-LHC): Technical design report, CERN Yellow Reports: Monographs 10/2020 (2020), https://cds. cern.ch/record/2749422/. 10.23731/CYRM-2020-0010 [Google Scholar]
  2. ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3, S08003 (2008). 10.1088/1748-0221/3/08/S08003 [Google Scholar]
  3. ATLAS Collaboration, ATLAS HL-LHC Computing Conceptual Design Report, CERN-LHCC-2020-015; LHCC-G-178 (2020), https://cds.cern.ch/record/2729668 [Google Scholar]
  4. ATLAS Collaboration, ATLAS Software and Computing HL-LHC Roadmap, CERN-LHCC-2022-005; LHCC-G-182 (2022), https://cds.cern.ch/record/2802918 [Google Scholar]
  5. P. Elmer, M. Neubauer, M.D. Sokoloff, Strategic Plan for a Scientific Software Innovation Institute (S2I2) for High Energy Physics (2017), https://arxiv.org/abs/1712.06592, 1712.06592. [Google Scholar]
  6. J. Albrecht et al. (HEP Software Foundation), A Roadmap for HEP Software and Computing R&D for the 2020s, Comput. Softw. Big Sci. 3, 7 (2019), 1712.06982. 10.1007/s41781-018-0018-8 [Google Scholar]
  7. A. Held, O. Shadura, The IRIS-HEP Analysis Grand Challenge, PoS ICHEP2022, 235 (2022). 10.22323/1.414.0235 [Google Scholar]
  8. E. Rodrigues et al., The Scikit HEP Project – overview and prospects, EPJ Web Conf. 245, 06028 (2020), 2007.03577. 10.1051/epjconf/202024506028 [Google Scholar]
  9. J. Schaarschmidt, J. Catmore, J. Elmsheuser, L. Heinrich, N. Krumnack, S. Mete, N. Ozturk, PHYSLITE - A new reduced common data format for ATLAS, EPJ Web Conf. 295, 06017 (2024), https://cds.cern.ch/record/2870350/. 10.1051/epjconf/202429506017 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. ATLAS Collaboration, Software and computing for Run 3 of the ATLAS experiment at the LHC (2024), https://arxiv.org/abs/2404.06335, 2404.06335. [Google Scholar]
  11. ATLAS Collaboration, The First Release of ATLAS Open Data for Research, ATL-OREACH-PROC-2024-005 (2024), https://cds.cern.ch/record/2911158 [Google Scholar]
  12. N. Hartmann, J. Elmsheuser, G. Duckeck, Columnar data analysis with ATLAS analysis formats, EPJ Web Conf. 251, 03001 (2021). 10.1051/epjconf/202125103001 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. J. Pivarski, I. Osborne, I. Ifrim, H. Schreiner, A. Hollands, A. Biswas, P. Das, S. Roy Choudhury, N. Smith, M. Goyal, Awkward Array (2018), https://doi.org/10.5281/zenodo.4341376 [Google Scholar]
  14. J. Pivarski, H. Schreiner, A. Hollands, P. Das, K. Kothari, A. Roy, J. Ling, N. Smith, C. Burr, G. Stark, Uproot (2017), https://doi.org/10.5281/zenodo.4340632 [Google Scholar]
  15. L. Gray, N. Smith, A. Novak, P. Fackeldey, B. Tovar, Y.M. Chen, G. Watts, I. Krommydas, coffea (2023), https://doi.org/10.5281/zenodo.3266454 [Google Scholar]
  16. N. Smith et al. (CMS), Coffea: Columnar Object Framework For Effective Analysis, EPJ Web Conf. 245, 06012 (2020), 2008.12712. 10.1051/epjconf/202024506012 [Google Scholar]
  17. K. Choi, M. Feickert, L. Gray, A. Held, V. Kourlitis, A. Peixoto, J. Pivarski, O. Shadura, G. Watts, US ATLAS / IRIS-HEP Analysis Software Training Event 2024 (2024), Note in particular contributions on PHYSLITE and Coffea., https://indico.cern.ch/event/1376945/ [Google Scholar]
  18. G. Watts, func_adl (2024), https://github.com/iris-hep/func_adl [Google Scholar]
  19. M. Proffitt, G. Watts, FuncADL: Functional Analysis Description Language, EPJ Web Conf. 251, 03068 (2021), 2103.02432. 10.1051/epjconf/202125103068 [Google Scholar]
  20. B. Galewsky, A. Eckart, G. Watts, S. Thapa, P. Onyisi, M. Weinberg, I. Vukotic, ServiceX (2024), https://github.com/ssl-hep/ServiceX [Google Scholar]
  21. G. Watts, K. Choi, P. Onyisi, K. Mahajan, B. Galewsky, M. Feickert, ServiceX Client Library (2024), https://github.com/ssl-hep/ServiceX_frontend [Google Scholar]
  22. B. Galewsky, R. Gardner, L. Gray, M. Neubauer, J. Pivarski, M. Proffitt, I. Vukotic, G. Watts, M. Weinberg, ServiceX A Distributed, Caching, Columnar Data Delivery Service, EPJ Web Conf. 245, 04043 (2020). 10.1051/epjconf/202024504043 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  23. R. Brun, F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth. A 389, 81 (1997). 10.1016/S0168-9002(97)00048-X [Google Scholar]
  24. W. Jakob, nanobind: tiny and efficient C++/Python bindings (2022), https://github.com/wjakob/nanobind [Google Scholar]
  25. M. Feickert, N. Hartman, L. Heinrich, A. Held, V. Kourlitis, N. Krumnack, G. Stark, M. Vigl, G. Watts, Using Legacy ATLAS C++ Calibration Tools in Modern Columnar Analysis Environments (2024), 22nd International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2024), https://indico.cern. ch/event/1330797/contributions/5796636/ [Google Scholar]
  26. D. Davis, L. Gray, M. Durant, A. Hollands, dask-awkward (2024), https://github. com/dask-contrib/dask-awkward [Google Scholar]
  27. ATLAS Collaboration, Columnar Athena (2024), https://gitlab.cern.ch/atlas-asg/columnar-athena [Google Scholar]
  28. ATLAS Collaboration, Athena (2023), https://gitlab.cern.ch/atlas/athena [Google Scholar]
  29. N. Smith, correctionlib (2024), https://github.com/cms-nanoAOD/correctionlib [Google Scholar]
  30. The pip developers, pip (2024), https://github.com/pypa/pip [Google Scholar]
  31. conda contributors, conda: A system-level, binary package and environment manager running on all major operating systems and platforms., https://github.com/conda/conda [Google Scholar]
  32. H. Schreiner, III, J.C. Fillion-Robin, M. McCormick, Scikit-build-core (2024), SciPy 2024, https://doi.org/10.25080/FMKR8387 [Google Scholar]
  33. V.E. Padulano, pip install ROOT: experiences making a complex multi-language package accessible for Python users (2024), 27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024), https://indico.cern.ch/event/1338689/contributions/6010410/ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.