Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Gradient Boosted Decision Tree for Particle Identification Problem at MPD

V. Papoyan, A. Aparin, A. Ayriyan, H. Grigorian and A. Korobitsin
Physics of Particles and Nuclei Letters 22 (3) 622 (2025)
https://doi.org/10.1134/S1547477125700256

Nuclear Physics in the Era of Quantum Computing and Quantum Machine Learning

José‐Enrique García‐Ramos, Álvaro Sáiz, José M. Arias, Lucas Lamata and Pedro Pérez‐Fernández
Advanced Quantum Technologies (2024)
https://doi.org/10.1002/qute.202300219

Visual analytics system for understanding DeepRL-based charged particle tracking

Raju Ningappa Mulawade, Christoph Garth and Alexander Wiebel
The Visual Computer 40 (12) 9083 (2024)
https://doi.org/10.1007/s00371-024-03297-3

Deep learning based tracking reconstruction and magnetic field measurement research in the muon g-2 experiment

Bingzhi Li and Shuotian Lü
Nuclear and Particle Physics Proceedings 345 18 (2024)
https://doi.org/10.1016/j.nuclphysbps.2024.05.001

Toward the end-to-end optimization of particle physics instruments with differentiable programming

Tommaso Dorigo, Andrea Giammanco, Pietro Vischia, Max Aehle, Mateusz Bawaj, Alexey Boldyrev, Pablo de Castro Manzano, Denis Derkach, Julien Donini, Auralee Edelen, Federica Fanzago, Nicolas R. Gauger, Christian Glaser, Atılım G. Baydin, Lukas Heinrich, Ralf Keidel, Jan Kieseler, Claudius Krause, Maxime Lagrange, Max Lamparth, Lukas Layer, Gernot Maier, Federico Nardi, Helge E.S. Pettersen, Alberto Ramos, et al.
Reviews in Physics 10 100085 (2023)
https://doi.org/10.1016/j.revip.2023.100085

Development of ML FPGA Filter for Particle Identification and Tracking in Real Time

F. Barbosa, L. Belfore, N. Branson, et al.
IEEE Transactions on Nuclear Science 70 (6) 960 (2023)
https://doi.org/10.1109/TNS.2023.3259436

Learning tree structures from leaves for particle decay reconstruction

James Kahn, Ilias Tsaklidis, Oskar Taubert, et al.
Machine Learning: Science and Technology 3 (3) 035012 (2022)
https://doi.org/10.1088/2632-2153/ac8de0

Particle track classification using quantum associative memory

Gregory Quiroz, Lauren Ice, Andrea Delgado and Travis S. Humble
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1010 165557 (2021)
https://doi.org/10.1016/j.nima.2021.165557

Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors

Rudolf Frühwirth and Are Strandlie
Particle Acceleration and Detection, Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors 81 (2021)
https://doi.org/10.1007/978-3-030-65771-0_5

Application of Deep Learning Techniques for Multiparticle Track Reconstruction of Drift Chamber Data

V. S. Vorob’ev, E. A. Zadeba, R. V. Nikolaenko, A. A. Petrukhin and I. Yu. Troshin
Physics of Atomic Nuclei 84 (9) 1567 (2021)
https://doi.org/10.1134/S1063778821090350

The NeurIPS '18 Competition

Sabrina Amrouche, Laurent Basara, Paolo Calafiura, et al.
The Springer Series on Challenges in Machine Learning, The NeurIPS '18 Competition 231 (2020)
https://doi.org/10.1007/978-3-030-29135-8_9

First results from the LUCID-Timepix spacecraft payload onboard the TechDemoSat-1 satellite in Low Earth Orbit

Will Furnell, Abhishek Shenoy, Elliot Fox and Peter Hatfield
Advances in Space Research 63 (5) 1523 (2019)
https://doi.org/10.1016/j.asr.2018.10.045

FPGA-Accelerated Machine Learning Inference as a Service for Particle Physics Computing

Javier Duarte, Philip Harris, Scott Hauck, et al.
Computing and Software for Big Science 3 (1) (2019)
https://doi.org/10.1007/s41781-019-0027-2

Track reconstruction at LHC as a collaborative data challenge use case with RAMP

Sabrina Amrouche, Nils Braun, Paolo Calafiura, et al.
EPJ Web of Conferences 150 00015 (2017)
https://doi.org/10.1051/epjconf/201715000015