Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Unsupervised beyond-standard-model event discovery at the LHC with a novel quantum autoencoder

Callum Duffy, Mohammad Hassanshahi, Marcin Jastrzebski and Sarah Malik
Quantum Machine Intelligence 7 (1) (2025)
https://doi.org/10.1007/s42484-025-00258-4

Quantum anomaly detection in the latent space of proton collision events at the LHC

Vasilis Belis, Kinga Anna Woźniak, Ema Puljak, Panagiotis Barkoutsos, Günther Dissertori, Michele Grossi, Maurizio Pierini, Florentin Reiter, Ivano Tavernelli and Sofia Vallecorsa
Communications Physics 7 (1) (2024)
https://doi.org/10.1038/s42005-024-01811-6

The study of intelligent algorithm in particle identification of heavy-ion collisions at low and intermediate energies

Gao-Yi Cheng, Qian-Min Su, Xi-Guang Cao and Guo-Qiang Zhang
Nuclear Science and Techniques 35 (2) (2024)
https://doi.org/10.1007/s41365-024-01388-3

Nuclear Physics in the Era of Quantum Computing and Quantum Machine Learning

José‐Enrique García‐Ramos, Álvaro Sáiz, José M. Arias, Lucas Lamata and Pedro Pérez‐Fernández
Advanced Quantum Technologies (2024)
https://doi.org/10.1002/qute.202300219

Guided quantum compression for high dimensional data classification

Vasilis Belis, Patrick Odagiu, Michele Grossi, Florentin Reiter, Günther Dissertori and Sofia Vallecorsa
Machine Learning: Science and Technology 5 (3) 035010 (2024)
https://doi.org/10.1088/2632-2153/ad5fdd

Reconstructing charged particle track segments with a quantum-enhanced support vector machine

Philippa Duckett, Gabriel Facini, Marcin Jastrzebski, Sarah Malik, Tim Scanlon and Sébastien Rettie
Physical Review D 109 (5) (2024)
https://doi.org/10.1103/PhysRevD.109.052002

The Tracking Machine Learning Challenge: Throughput Phase

Sabrina Amrouche, Laurent Basara, Paolo Calafiura, et al.
Computing and Software for Big Science 7 (1) (2023)
https://doi.org/10.1007/s41781-023-00094-w

Quantum simulation of quantum mechanical system with spatial noncommutativity

S. Hasibul Hassan Chowdhury, Talal Ahmed Chowdhury, Salah Nasri, Omar Ibna Nazim and Shaikh Saad
International Journal of Quantum Information 21 (06) (2023)
https://doi.org/10.1142/S0219749923500284

Fitting a collider in a quantum computer: tackling the challenges of quantum machine learning for big datasets

Miguel Caçador Peixoto, Nuno Filipe Castro, Miguel Crispim Romão, Maria Gabriela Jordão Oliveira and Inês Ochoa
Frontiers in Artificial Intelligence 6 (2023)
https://doi.org/10.3389/frai.2023.1268852

Loop-free tensor networks for high-energy physics

Simone Montangero, Enrique Rico and Pietro Silvi
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380 (2216) (2022)
https://doi.org/10.1098/rsta.2021.0065

Classical versus quantum: Comparing tensor-network-based quantum circuits on Large Hadron Collider data

Jack Y. Araz and Michael Spannowsky
Physical Review A 106 (6) (2022)
https://doi.org/10.1103/PhysRevA.106.062423

Quantum Machine Learning for b-jet charge identification

Alessio Gianelle, Patrick Koppenburg, Donatella Lucchesi, et al.
Journal of High Energy Physics 2022 (8) (2022)
https://doi.org/10.1007/JHEP08(2022)014

Embedding of particle tracking data using hybrid quantum-classical neural networks

Carla Rieger, Cenk Tüysüz, Kristiane Novotny, et al.
EPJ Web of Conferences 251 03065 (2021)
https://doi.org/10.1051/epjconf/202125103065

Hybrid quantum classical graph neural networks for particle track reconstruction

Cenk Tüysüz, Carla Rieger, Kristiane Novotny, et al.
Quantum Machine Intelligence 3 (2) (2021)
https://doi.org/10.1007/s42484-021-00055-9

Event Classification with Quantum Machine Learning in High-Energy Physics

Koji Terashi, Michiru Kaneda, Tomoe Kishimoto, et al.
Computing and Software for Big Science 5 (1) (2021)
https://doi.org/10.1007/s41781-020-00047-7

Quantum Gate Pattern Recognition and Circuit Optimization for Scientific Applications

Wonho Jang, Koji Terashi, Masahiko Saito, et al.
EPJ Web of Conferences 251 03023 (2021)
https://doi.org/10.1051/epjconf/202125103023