Open Access
EPJ Web of Conferences
Volume 70, 2014
1st International Conference on New Frontiers in Physics
Article Number 00082
Number of page(s) 10
Section Friday
Published online 10 April 2014
  1. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and L. Smolin, The principle of relative locality, arXiv:1101.0931 [hep-th].
  2. G. Amelino-Camelia & S. Majid, Waves on noncommutative spacetime and gamma-ray bursts, Int. J. Mod. Phys. A15 (2000) 4301–4323 [CrossRef]
  3. E.J. Beggs & S. Majid, Semiclassical differential structures, Pac. J. Math. 224 (2006) 1–44 [CrossRef]
  4. U. Carow-Watamura, M. Schlieker, M. Scholl & S. Watamura, Tensor representation of the quantum group S Lq(2,C) and quantum Minkowski space, Z. Phys. C 48 (1990) 159. [CrossRef]
  5. A.D. Chernin, V.P. Dolgachev, L.M. Domozhilova, Dark energy in the local Universe, in “Astrophysics and Cosmology After Gamow”, AIP Conference Proceedings, Volume 1206, pp. 48–54 (2010).
  6. A. Connes, Noncommutative Geometry, Academic Press (1994)
  7. S. Doplicher, K. Fredenhagen & J. E. Roberts, The quantum structure of spacetime at the Planck scale and quantum fields, Commun. Math. Phys. 172 (1995) 187–220. [CrossRef] [MathSciNet]
  8. L. Freidel & E.R. Livine, Ponzano-Regge model revisited: III. Feynman diagrams and effective field theory, Class. Quantum Grav. 23 (2006) 2021–2062 [CrossRef]
  9. L. Freidel & S. Majid, Noncommutative harmonic analysis, sampling theory and the Duflo map in 2+1 quantum gravity, Class. Quant. Gravity 25 (2008) 045006 (37pp) [CrossRef]
  10. G. ’t Hooft, Quantization of point particles in 2+1 dimensional gravity and space-time discreteness, Class. Quantum Grav. 13 (1996) 1023 [CrossRef]
  11. J. Lukierski, A. Nowicki, H. Ruegg, & V.N. Tolstoy, q-Deformation of Poincaré algebra, Phys. Lett. B, 268 (1991) 331–338 [CrossRef] [MathSciNet]
  12. S. Majid, Hopf algebras for physics at the Planck scale, Class. Quant. Gravity 5 (1988) 1587–1607 [CrossRef]
  13. S. Majid, Braided momentum in the q-Poincare group, J. Math. Phys. 34 (1993) 2045–2058 [CrossRef]
  14. S. Majid, Quantum groups and noncommutative geometry, J. Math. Phys. 41 (2000) 3892–3942 (Millenium volume) [CrossRef]
  15. S. Majid, Noncommutative model with spontaneous time generation and Planckian bound, J. Math. Phys. 46 (2005) 103520 (18pp) [CrossRef]
  16. S. Majid, Almost commutative Riemannian geometry: wave operators, in press Commun. Math. Phys. 310 (2012) 569–609. [CrossRef]
  17. S. Majid & H. Ruegg, Bicrossproduct structure of the κ-Poincare group and non-commutative geometry, Phys. Lett. B. 334 (1994) 348–354 [CrossRef] [MathSciNet]
  18. S. Majid & B. Schroers, q-Deformation and semidualisation in 3D quantum gravity, J. Phys A 42 (2009) 425402 (40pp) [CrossRef]
  19. O. Romero-Isart, L. Clemente, C. Navau, A. Sanchez and J. I. Cirac, Quantum magnetomechanics with levitating superconducting microspheres, arXiv:1112.5609v3 [quant-ph]
  20. B.J. Schroers, Combinatorial quantization of Euclidean gravity in three dimensions, in Progress in Mathematics vol 198, ed N P Landsman, M Pflaum and M Schlichenmaier, Birkhauser (2001) pp 307–28
  21. A. Sitarz, Noncommutative differential calculus on the κ-Minkowski space, Phys. Lett. B 349 (1995) 42–48 [CrossRef] [MathSciNet]
  22. H.S. Snyder. Quantized space-time. Phys. Rev. D 67 (1947) 38–41 [CrossRef]
  23. S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1–23 [NASA ADS] [CrossRef] [MathSciNet]
  24. S.L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys. 122 (1989) 125–170 [CrossRef]