Open Access
EPJ Web of Conferences
Volume 78, 2014
Wigner 111 – Colourful & Deep Scientific Symposium
Article Number 01005
Number of page(s) 8
Section Wigner’s Heritage (plenary talks)
Published online 25 September 2014
  1. E. Wigner, On Unitary Representations of the Inhomogeneous Lorentz group, Ann. Math. 40, 149–204 (1939). [CrossRef] [MathSciNet]
  2. Y. S. Kim and E. P. Wigner, Space-time geometry of relativistic particles, J. Math. Phys. 31, 55–60 (1990). [CrossRef]
  3. M. Born and E. Wolf, Principles of Optics, 6th Ed. (Pergamon, Oxford, 1980).
  4. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (John Wiley, New York, 1998).
  5. Y. S. Kim and M. E. Noz, Symmetries Shared by the Poincaré Group and the Poincaré Sphere, Symmetry 5, 223–252 (2013).
  6. D. Han, Y. S. Kim, and M. E. Noz, Stokes parameters as a Minkowskian four-vector, Phys. Rev. E 56, 6065–76. (1997). [CrossRef]
  7. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Second Edition (Wiley, Hoboken, New Jersey, 2007).
  8. M. A. Naimark, Linear Representation of the Lorentz Group, Uspekhi Mat. Nauk 9, No.4(62), 19–93 (1954).
  9. An English version of this article (translated by F. V. Atkinson) is in the American Mathematical Society Translations, Series 2. Volume 6, 379–458 (1957).
  10. Y. S. Kim and M. E. Noz Theory and Applications of the Poincaré Group (Reidel, Dordrecht 1986). [CrossRef]
  11. S. Başkal and Y. S. Kim, de Sitter group as a symmetry for optical decoherence, J. Phys. A 39, 7775–88 (2006) [CrossRef]
  12. S. Weinberg, Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev. 135, B1049–56 (1964). [CrossRef]
  13. D. Han, Y. S. Kim, and D. Son, Photon spin as a rotation in gauge space, Phys. Rev. D 25, 461–463 (1982). [CrossRef]