Open Access
EPJ Web of Conferences
Volume 78, 2014
Wigner 111 – Colourful & Deep Scientific Symposium
Article Number 03003
Number of page(s) 6
Section Group Theory
Published online 25 September 2014
  1. Alekseev, A., Faddeev, L., Semenov-Tian-Shansky, M., Hidden quantum group inside Kac-Moody algebras, Commun. Math. Phys. 149 (1992), 335–345. [CrossRef]
  2. Babelon, O. Exchange formula and lattice deformation of the Virasoro algebra, Phys. Lett. B 238 (1990), no. 2-4, 234–238. [CrossRef]
  3. Drinfeld, V.G., Sokolov, V.V. Lie algebras and equations of Korteweg-de Vries type, Sov. Math. Dokl. 23 (1981) 457–462.
  4. Etingof P. Galois groups and connections matrices of q-difference equations, Electronic Res. Announc. of the Amer. Math. Soc. 1, 1 (1995).
  5. Frenkel, E., Reshetikhin, N., Semenov-Tian-Shansky, M.A. Drinfeld-Sokolov reduction for difference operators and deformations of W-algebras. I: The case of Virasoro algebra, Commun. Math. Phys. 192, (1998) 605–629. [CrossRef]
  6. Marshall I., Semenov-Tian-Shansky, M.A. Poisson groups and differential Galois theory of Schrödinger equation on the circle, Commun. Math. Phys. 2008, 284, 537–552. [CrossRef]
  7. Ovsienko, V., Tabachnikov, S. Projective differential geometry old and new: from Schwarzian derivative to cohomology of diffeomorphism group. Cambridge Tracts in Mathematics, 165. Cambridge University Press, Cambridge, 2005.
  8. Semenov-Tian-Shansky, M.A. Dressing transformations and Poisson-Lie group actions, Publ. RIMS. 21 (1985), 1237–1260.
  9. Wilson, G. On the quasi-Hamiltonian formalism of the KdV equation, Physics Letters A 132 (1988), 445–450. [CrossRef]