Open Access
EPJ Web of Conferences
Volume 94, 2015
DYMAT 2015 - 11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 04028
Number of page(s) 4
Section Modeling and Numerical Simulation
Published online 07 September 2015
  1. Gurney R.W. The initial velocities of fragments from bombs, shell and grenades[R]. Army Ballistic Research Lab Aberdeen Proving Ground MD, 1943
  2. Mott N.F. Fragmentation of shell cases. Proc Royal Soc Lond A (1947);189:300–8 [CrossRef]
  3. Taylor G.I. The fragmentation of tubular bombs. In: Scientific papers of G.I. Taylor, vol. III. Cambridge: Cambridge University Press; 1963. No. 44, pp. 387–390
  4. Hoggatt R.H. , Recht R.F. Fracture behavior of tubular bombs. J. Appl. Phys. (1968); 39(2):1856–62 [CrossRef]
  5. Singh M., Suneja H.R., Bola M.S., et al. Dynamic tensile deformation and fracture of metal cylinders at high strain rates. International journal of impact engineering (2002), 27(9): 939–954 [CrossRef]
  6. Tang T., Li Q., Sun X., Sun Z., Jin S. and Gu Y., Strain-rate effect of expanding fracture of 45 steel cylinder shells driven by detonation, Explsion and shock Waves (2006), 26(1):129–133 (in Chinese)
  7. Tang T., Gu Y., Li Q., et al. Expanding fracture of steel cylinder shell by detonation driving, Explsion and shock Waves (2003), 23(6): 529–533 (in Chinese)
  8. D.M. Goto*, R. Becker, T.J. Orzechowski, H.K. Springer, A.J. Sunwoo, C.K. Syn, Investigation of the fracture and fragmentation of explosively driven rings and cylinders, International Journal of Impact Engineering 35 (2008) 1547–11556 [CrossRef]
  9. C. Zener, J.H. Hollomon, Effects of strain rate upon plastic flow of steel. J. Appl. Phys. (1944) 15, 22–32 [CrossRef]
  10. Y. Bai, B. Dodd. Adiabatic shear localization. Oxford: Pergamon press (1992) p. 24
  11. V. F. Nestrenko. Shear localization and shear bands pattern in heterogeneous materials. In: Dynamics of Heterogeneous Materials, New York, (2001) p. 307–384 [CrossRef]
  12. Q. Xue, M.A. Meyes, V.F. Nestrenko. Self-organization of shear bands in stainless steel. Material Science and Engineening A (2004) 384, 35–46 [CrossRef]
  13. V.F. Nestrenko, M.A. Meyes, T.W. Wright. Self-organization in the initiation of adiabatic shear bands. Acta materiallia (1997) 46, 327–340 [CrossRef]
  14. Hoggatt C.R., Recht R.F. Fracture behavior of tubular bombs[J]. Journal of Applied Physics (2003), 39(3): 1856–1862 [CrossRef]
  15. R.C. Batra, C.H. Kim. Analysis of shear banding in twelve materials. Int. J. Plasticity (1992) 8, 425–452 [CrossRef]
  16. M. Zhou, A.J. Rosakis, G. Ravichandran. Dynamically propagating shear bands in impact-loaded pre-notched plates–1. Experimental investigations of temperature signaturesand propagation speed. J. Mech. Phys. Solids (1996) 44, 981–1006 [CrossRef]
  17. F. Zhou, T.W. Wright and K.T. Ramesh. A numerical methodology for investigating the formation of adiabatic shear bands, Journal of Mechanics and Physics of Solids (2006) 54, 904–926 [CrossRef]
  18. N. Medyanika, W.K. Liua and S. Li. On criteria for dynamic adiabatic shear band propagation, Journal of the Mechanics and Physics of Solids (2007) 55, 1439–1461 [CrossRef]