Open Access
EPJ Web of Conferences
Volume 119, 2016
The 27th International Laser Radar Conference (ILRC 27)
Article Number 01004
Number of page(s) 4
Section Spaceborne Lidar Missions
Published online 07 June 2016
  1. Illingworth, A., et al., 2014: THE EARTHCARE SATELLITE: The next step forward in global measurements of clouds, aerosols, precipitation and radiation. Bull. Am. Met. Soc., doi:10.1175/BAMS-D-12-00227.1.
  2. Barker, H. W., et al., 2011: A 3D cloudconstruction algorithm for the EarthCARE satellite mission. Q. J. R. Meteorol. Soc., 137, 1042–1058, doi: 10.1002/qj.824. [CrossRef]
  3. Omar, A. H., et al., 2005: Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements, J. Geophys. Res., 110, D10S14, doi:10.1029/2004JD 004874. [CrossRef]
  4. Omar, A. H., et al., 2009: The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Technol., 26, 1994–2014. doi:10.1175/2009JTECHA1231.1. [CrossRef]
  5. Burton, S. P., et al., 2012: Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples. Atmos. Meas. Tech., 5, 73–98, doi:10.5194/amt-5-73-2012. [CrossRef]
  6. Groß, S., et al., 2014: Towards an aerosol classification scheme for future EarthCARE lidar observations and implications for research needs. Atmosph. Sci. Lett., 16, 77–82, doi: 10.1002/asl2.524.
  7. Russell, P. B., et al., 2014: A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry. J. Geophys. Res. Atmos., 119, 9838–9863, doi:10.1002/2013JD 021411. [CrossRef]
  8. Holzer-Popp, T., et al., 2013: Aerosol retrieval experiments in the ESA Aerosol_cci project, Atmos. Meas. Tech., 6, 1919–1957, doi:10.5194/amt-6-1919-2013. [CrossRef]
  9. Groß, S., et al., 2011: Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2. Tellus B, 63, 706–724, doi:10.1111/j.1600-0889.2011.00556.x.
  10. Groß, S., et al., 2012: Dual-wavelength linear depolarization ratio of volcanic aerosols: Lidar measurements of the Eyjafjallajökull plume over Maisach, Germany. Atm. Env., 48, 85–96, doi:10.1016/j.atmosenv.2011.06.017. [CrossRef]
  11. Baars, H., et al., 2012: Aerosol profiling with lidar in the Amazon Basin during the wet and dry season. J. Geophys. Res., 117, D21201, doi:10.1029/2012JD 018338. [CrossRef]
  12. Kanitz, T., et al., 2013: North-south cross sections of the vertical aerosol distribution over the Atlantic Ocean from multiwavelength Raman/polarization lidar during Polarstern cruises. J. Geophys. Res. Atmos., 118, 2643–2655, doi:10.1002/jgrd.50273. [CrossRef] [PubMed]
  13. Dubovik, O., et al., 2006: Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619. [CrossRef]
  14. Hess, M., et al., 1998a: Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Met. Soc., 79, 831–844. [CrossRef]
  15. Koepke, P., et al., 2015: Technical Note: Optical properties of desert dust with non-spherical particles: data incorporated to OPAC. Atmos. Chem. Phys. Discuss., 15, 3995–4023, doi:10.5194/acpd-15-3995-2015. [CrossRef]
  16. Kandler, K., et al., 2009: Size distributions, mass concentrations, chemical and mineralogical composition, and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006, Tellus B, 61, 32–50, doi:10.1111/j.1600-0889.2008.00385.x. [CrossRef]