Open Access
EPJ Web of Conferences
Volume 119, 2016
The 27th International Laser Radar Conference (ILRC 27)
Article Number 11004
Number of page(s) 4
Section Lidar Cloud Studies
Published online 07 June 2016
  1. Sassen, K., et al., 1989: Optical scattering and microphysical properties of subvisual cirrus clouds, and climate implications. Journal of Applied Meteorology, 28. [CrossRef]
  2. Jensen, E.J., O et al., 1996: On the formation and persistence of subvisual cirrus clouds near the tropical tropopause. Journal of Geophysical Research, 101, 95JD03575
  3. IPCC: Climate Change 2013 – The Physical Science Basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2014.
  4. Spang, R., et al., S. 2015: Satellite observations of cirrus clouds in the Northern Hemisphere lowermost stratosphere, Atmos. Chem. Phys., 15, 927-950, doi:10.5194/acp-15-927-2015. [CrossRef]
  5. Immler, F., Treffeisen, R., Engelbart, D., Krüger, K., and Schrems, O. 2008: Cirrus, contrails, and ice supersaturated regions in high pressure systems at northern mid latitudes, Atmos. Chem. Phys., 8, 1689-1699, doi:10.5194/acp-8-1689-2008. [CrossRef]
  6. Welton, et al, 2001, Global monitoring of clouds and aerosols using a network of micropulse lidar systems, in Lidar Remote Sensing for Industry and Environmental Monitoring. Proc. SPIE, 4153, 151-158, 2001 [CrossRef]
  7. Lolli S., Welton E. J., Campbell J. R., 2013: Evaluating Light Rain Drop Size Estimates from Multiwavelength Micropulse Lidar Network Profiling. J. Atmos. Oceanic Technol., 30, 2798–2807. [CrossRef]
  8. Heymsfield, A. et al., 2014: Relationships between Ice Water Content and Volume Extinction Coefficient from In Situ Observations for Temperatures from 0° to −86°C: Implications for Spaceborne Lidar Retrievals*. J. Appl. Meteor. Climatol., 53, 479–505. [CrossRef]
  9. Fu, Q. and Liou, K. N. 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres, J. Atmos. Sci., 49, 2139–2156. [CrossRef]
  10. Gu, Y. et al.,: 2003: Parameterization of cloud-radiation processes in the UCLA general circulation model, J. Climate, 16, 3357–3370. [CrossRef]
  11. Grenfell, T. C., and S. G. Warren, 1999: Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation, J. Geophys. Res., 104(D24), 31,697–31,709. [CrossRef]
  12. Spinhirne, J.D., et al., 1995 Compact Eye Safe Lidar Sys., Rev. Laser Eng., 23, 112-118, [CrossRef]
  13. Lolli, S., et al, 2011. EZ Lidar: A new compact autonomous eye-safe scanning aerosol lidar for extinction measurements and PBL height detection. Validation of the performances against other instruments and intercomparison campaigns. Ópt.Pura y Apl., 44 (1), 33-41.
  14. Reverdy, M., et al, 2012: On the origin of subvisible cirrus clouds in the tropical upper troposphere, Atmos. Chem. Phys., 12, 12081-12101, doi:10.5194/acp-12-12081-2012 [CrossRef]
  15. Solomon, S., et al., 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming, Science, 327, 1219-33 [CrossRef] [PubMed]