Open Access
EPJ Web of Conferences
Volume 119, 2016
The 27th International Laser Radar Conference (ILRC 27)
Article Number 17005
Number of page(s) 4
Section Poster Session (Advances in Lidar Technologies and Techniques II)
Published online 07 June 2016
  1. Argall, P. S. and R. J. Sica. A comparison of rayleigh and sodium lidar temperature climatologies. Ann. Geophys., 25:27–35, 2007. [CrossRef]
  2. Hauchecorne, A., M. Chanin, and P. Keckhut. Climatology and trends of the middle atmospheric temperature (33-87 km) as seen by rayleigh lidar over the south of france. J. Geophys. Res., 96:5169–5183, 1991. [CrossRef]
  3. Iserhienrhien, B., R. J. Sica, and P. S. Argall. A 7-year lidar temperature climatology of the mid-latitude upper troposphere and stratosphere. Atmosphere-Ocean, 51:532–540, 2013. [CrossRef]
  4. Khanna, Jaya, Justin Bandoro, R. J. Sica, and C. Thomas McElroy. New technique for retrieval of atmospheric temperature profiles from rayleigh-scatter lidar measurements using nonlinear inversion. Applied Optics, 51:7945–52, 2012. [CrossRef] [PubMed]
  5. Sica, R. J., S. Sargoytchev, P. S. Argall, E. F. Borra, L. Girard, C. T. Sparrow, and S. Flatt. Lidar measurements taken with a large aperture liquid mirror. 1. rayleigh scatter system. Applied Optics, 34:6925–6936, 1995. [CrossRef] [PubMed]
  6. Sica, R. J., Z. A. Zylawy, and P.S. Argall. Ozone corrections for rayleigh-scatter temperature determinations in the middle atmosphere. Journal of Atmospheric and Oceanic Technology, 18:1223–1228, 2001. [CrossRef]