Issue |
EPJ Web of Conferences
Volume 6, 2010
ICEM 14 – 14th International Conference on Experimental Mechanics
|
|
---|---|---|
Article Number | 42003 | |
Number of page(s) | 7 | |
Section | Fracture and Fatigue | |
DOI | https://doi.org/10.1051/epjconf/20100642003 | |
Published online | 10 June 2010 |
https://doi.org/10.1051/epjconf/20100642003
Experimental and numerical in-plane displacement fields for determine the J-integral on a PMMA cracked specimen
1
Université de Poitiers, CNRS UMR6269, Laboratoire Hydrasa,
ESIP, 40 Av. du
Recteur Pineau
86000
Poitiers,
France
2
Université de Poitiers, CNRS UPR3346, Institut
PPRIME, SP2MI 2 Bd
Marie et Pierre Curie
86962
Futuroscope Chasseneuil,
France
a e-mail: stephen.hedan@univ-poitiers.fr
Contrary to J-integral values calculated from the 2D numerical model, calculated J-integrals [1] in the 3D numerical and 3D experimental cases are not very close with J-integral used in the literature. We can note a problem of structure which allows three-dimensional effects surrounding the crack tip to be seen. The aim of this paper is to determine the zone where the Jintegral formulation of the literature is sufficient to estimate the energy release rate (G) for the 3D cracked structure. For that, a numerical model based on the finite element method and an experimental setup are used. A grid method is adapted to experimentally determine the in-plane displacement fields around a crack tip in a Single-Edge-Notch (SEN) tensile polymer (PMMA) specimen. This indirect method composed of experimental in-plane displacement fields and of 2 theoretical formulations, allows the experimental J-integral on the free-surface to be determined and the results obtaining by the 3D numerical simulations to be confirmed.
© Owned by the authors, published by EDP Sciences, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.