Issue |
EPJ Web Conf.
Volume 170, 2018
ANIMMA 2017 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
|
|
---|---|---|
Article Number | 02008 | |
Number of page(s) | 7 | |
Section | Fusion diagnostics and technology | |
DOI | https://doi.org/10.1051/epjconf/201817002008 | |
Published online | 10 January 2018 |
https://doi.org/10.1051/epjconf/201817002008
Radiation induced currents in mineral-insulated cables and in pick-up coils: model calculations and experimental verification in the BR1 reactor
Belgian Nuclear Research Center, SCK•CEN, Boeretang 200, BE-2400 Mol, Belgium
ludo.vermeeren@sckcen.be willem.leysen@sckcen.be
Fusion for Energy, Av. Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona, Spain
benoit.brichard@f4e.europa.eu
Published online: 10 January 2018
Mineral-insulated (MI) cables and Low-Temperature Co-fired Ceramic (LTCC) magnetic pick-up coils are intended to be installed in various position in ITER. The severe ITER nuclear radiation field is expected to lead to induced currents that could perturb diagnostic measurements. In order to assess this problem and to find mitigation strategies models were developed for the calculation of neutron-and gamma-induced currents in MI cables and in LTCC coils.
The models are based on calculations with the MCNPX code, combined with a dedicated model for the drift of electrons stopped in the insulator. The gamma induced currents can be easily calculated with a single coupled photon-electron MCNPX calculation. The prompt neutron induced currents requires only a single coupled neutron-photon-electron MCNPX run. The various delayed neutron contributions require a careful analysis of all possibly relevant neutron-induced reaction paths and a combination of different types of MCNPX calculations.
The models were applied for a specific twin-core copper MI cable, for one quad-core copper cable and for silver conductor LTCC coils (one with silver ground plates in order to reduce the currents and one without such silver ground plates). Calculations were performed for irradiation conditions (neutron and gamma spectra and fluxes) in relevant positions in ITER and in the Y3 irradiation channel of the BR1 reactor at SCK•CEN, in which an irradiation test of these four test devices was carried out afterwards.
We will present the basic elements of the models and show the results of all relevant partial currents (gamma and neutron induced, prompt and various delayed currents) in BR1-Y3 conditions. Experimental data will be shown and analysed in terms of the respective contributions. The tests were performed at reactor powers of 350 kW and 1 MW, leading to thermal neutron fluxes of 1E11 n/cm2s and 3E11 n/cm2s, respectively. The corresponding total radiation induced currents are ranging from 1 to 7 nA only, putting a challenge on the acquisition system and on the data analysis.
The detailed experimental results will be compared with the corresponding values predicted by the model. The overall agreement between the experimental data and the model predictions is fairly good, with very consistent data for the main delayed current components, while the lower amplitude delayed currents and some of the prompt contributions show some minor discrepancies.
Key words: ITER / LTCC pick-up coils / Mineral-Insulated Cables / Neutrons / Radiation effects
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.