Issue |
EPJ Web Conf.
Volume 224, 2019
IV International Conference “Modeling of Nonlinear Processes and Systems” (MNPS-2019)
|
|
---|---|---|
Article Number | 03012 | |
Number of page(s) | 4 | |
Section | Mathematical Modeling in Biology, Chemistry and Earth’s Sciences | |
DOI | https://doi.org/10.1051/epjconf/201922403012 | |
Published online | 09 December 2019 |
https://doi.org/10.1051/epjconf/201922403012
Earth as a Gravitational-Wave Interferometr
Geological Institute, Kola Science Center Russian Academy of Sciences, RU-184209, Apatity, Russia
* e-mail: vadim@geoksc.apatity.ru
Published online: 9 December 2019
Based on the principle of Equivalence of Gravitating Masses (EGM) and tectonostratigraphic model of the Earth outer shell structure (the Earth crust and upper mantle), the average depth of the lunar mass gravitational influence on the Earth was calculated as ~1600 km. The developed model is based on the mechanism of rocks tectonic layering of the Earth crust-mantle shell as an oscillatory system with dynamic conditions of a standing wave, regularly excited by the lunar tide and immediately passing into the damping mode. After comparing the average depth of solid lunar tide impact of ~1600 km with the height of the solid lunar tide “hump” on the Earth surface of 0.5 m, a “tensile strain” was calculated with an amplitude only one order of magnitude larger than the amplitude of the gravitational wave recorded by the Advanced LIGO interferometer: A≈10-18 m (the merger result of a black holes pair ca 1.3 Ga ago). The results of the present study suggest that the crust-mantle shell of the Earth may be used as a gravitational-wave interferometer.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.