Issue |
EPJ Web Conf.
Volume 245, 2020
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
|
|
---|---|---|
Article Number | 05020 | |
Number of page(s) | 6 | |
Section | 5 - Software Development | |
DOI | https://doi.org/10.1051/epjconf/202024505020 | |
Published online | 16 November 2020 |
https://doi.org/10.1051/epjconf/202024505020
Heterogeneous data-processing optimization with CLARA’s adaptive workflow orchestrator
1
Thomas Jefferson National Accelerator Facility, Newport News VA, USA
2
FSMT University, Valparaiso, Chile
* Corresponding author: gurjyan@jlab.org
Published online: 16 November 2020
The hardware landscape used in HEP and NP is changing from homogeneous multi-core systems towards heterogeneous systems with many different computing units, each with their own characteristics. To achieve maximum performance with data processing, the main challenge is to place the right computing on the right hardware. In this paper, we discuss CLAS12 charge particle tracking workflow orchestration that allows us to utilize both CPU and GPU to improve the performance. The tracking application algorithm was decomposed into micro-services that are deployed on CPU and GPU processing units, where the best features of both are intelligently combined to achieve maximum performance. In this heterogeneous environment, CLARA aims to match the requirements of each micro-service to the strength of a CPU or a GPU architecture. A predefined execution of a micro-service on a CPU or a GPU may not be the most optimal solution due to the streaming data-quantum size and the data-quantum transfer latency between CPU and GPU. So, the CLARA workflow orchestrator is designed to dynamically assign micro-service execution to a CPU or a GPU, based on the online benchmark results analyzed for a period of real-time data-processing.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.