Issue |
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
|
|
---|---|---|
Article Number | 03052 | |
Number of page(s) | 8 | |
Section | Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202125103052 | |
Published online | 23 August 2021 |
https://doi.org/10.1051/epjconf/202125103052
Readable and efficient HEP data analysis with bamboo
Université catholique de Louvain, Louvain-la-Neuve, Belgium
* e-mail: pieter.david@cern.ch
Published online: 23 August 2021
With the LHC continuing to collect more data and experimental analyses becoming increasingly complex, tools to efficiently develop and execute these analyses are essential. The bamboo framework defines a domain-specific language, embedded in python, that allows to concisely express the analysis logic in a functional style. The implementation based on ROOT’s RDataFrame and cling C++ JIT compiler approaches the performance of dedicated native code. Bamboo is currently being used for several CMS Run 2 analyses that rely on the NanoAOD data format, which will become more common in Run 3 and beyond, and for which many reusable components are included, but it provides many possibilities for customisation, which allow for straightforward adaptation to other formats and workflows.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.