Open Access
Issue
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
Article Number 03052
Number of page(s) 8
Section Offline Computing
DOI https://doi.org/10.1051/epjconf/202125103052
Published online 23 August 2021
  1. A. Rizzi, G. Petrucciani, M. Peruzzi (CMS collaboration), A further reduction in CMS event data for analysis: the NANOAOD format, in Proceedings of the 23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018), EPJ Web of Conferences, 214 (2019), 06021, 10.1051/epjconf/201921406021 [Google Scholar]
  2. E. Guiraud, A. Naumann, D. Piparo, TDataFrame: functional chains for ROOT data analyses, v10 (2017), 10.5281/zenodo.260230 [Google Scholar]
  3. R. Brun, F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997), 81–86 [NASA ADS] [CrossRef] [Google Scholar]
  4. F. Rademakers et al., root-project/root, v6.20/06 (2020), 10.5281/zenodo.3895852 [Google Scholar]
  5. S. Sekmen, P. Gras, L. Gray, B. Krikler, J. Pivarski, H.B. Prosper, A. Rizzi, G. Unel, G. Watts, Analysis Description Languages for the LHC, PoS LHCP2020, 065 (2021), 10.22323/1.382.0065, arXiv:2011.01950 [Google Scholar]
  6. V. Vassilev, P. Canal, A. Naumann, L. Moneta, P. Russo, Cling - The New Interactive Interpreter for ROOT 6, Journal of Physics: Conference Series 396 (IOP, 2021) 5, 052071, 10.1088/1742-6596/396/5/052071, [Google Scholar]
  7. W.T. Lavrijsen, A. Dutta, High-performance Python-C++ bindings with PyPy and Cling, in 6th Workshop on Python for High-Performance and Scientific Computing (PyHPC) (IEEE, 2016), 27–35, https://cppyy.readthedocs.io/en/latest/ [Google Scholar]
  8. J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: A CPU and GPU math compiler in Python, in Proceedings of the 9th Python in Science conference (2010), 10.25080/Majora-92bf1922-003 [Google Scholar]
  9. M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems (2015), software available from tensorflow.org [Google Scholar]
  10. I. Belyaev, LOKI: Smart & Friendly C++ Physics Analysis Toolkit, http://cern.ch/lhcb-comp/Analysis/Loki [Google Scholar]
  11. A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, H. Voss, TMVA: Toolkit for Multivariate Data Analysis, PoS ACAT, 040 (2007), CERN-OPEN-2007-007, arXiv:physics/0703039 [Google Scholar]
  12. D.H. Guest, J.W. Smith, M. Paganini, M. Kagan, M. Lanfermann, A. Krasznahorkay, D.E. Marley, A. Ghosh, B. Huth, Lwtnn/lwtnn version 2.11.1 (2020), 10.5281/zen-odo.4310003 [Google Scholar]
  13. A. Paszke et al., PyTorch: An Imperative Style, High-Performance Deep Learning Library, in Advances in Neural Information Processing Systems 32 (2019), pp. 8024–8035, arXiv:1912.01703 [Google Scholar]
  14. ONNX Runtime: Optimize and Accelerate Machine Learning Inferencing and Training, https://www.onnxruntime.ai [Google Scholar]
  15. D. Piparo, E. Tejedor, E. Guiraud, G. Ganis, P. Mato, L. Moneta, X. Valls Pla, P. Canal, Expressing Parallelism with ROOT, J. Phys. Conf. Ser. 898 (2017) 7, 072022, FERMILAB-CONF-16-738-CD, 10.1088/1742-6596/898/7/072022 [Google Scholar]
  16. G. Ball, V. Kuznetsov, D. Evans, S. Metson, Data Aggregation System: A system for information retrieval on demand over relational and non-relational distributed data sources, J. Phys. Conf. Ser. 331 (2011), 042029, FERMILAB-CONF-11-874-CMS, 10.1088/1742-6596/331/4/042029 [Google Scholar]
  17. P. David, Bamboo Open Data examples, pieterdavid/bamboo-opendata-examples [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.