Open Access
Issue |
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
|
|
---|---|---|
Article Number | 03051 | |
Number of page(s) | 8 | |
Section | Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202125103051 | |
Published online | 23 August 2021 |
- CMS Collaboration, Physics Letters B 716, 30 (2012), 1207.7235 [Google Scholar]
- ATLAS Collaboration, Physics Letters B 716, 1 (2012), 1207.7214 [Google Scholar]
- G. Apollinari, I. Béjar Alonso, O. Brüning, M. Lamont, L. Rossi, CERN-2015-005, FERMILAB-DESIGN-2015-02 (2015) [Google Scholar]
- K. Albertsson et al., arXiv e-prints (2018), 1807.02876 [Google Scholar]
- S. Gleyzer, P. Orlando R. D., S.H.B. Sekmen, O. Zapata, arXiv preprint arXiv:1203.1488 (2016) [Google Scholar]
- R. Brun, R. Hagelberg, M. Hansroul, J. Lassalle, Report Number CERN-DD-78-2 (1978) [Google Scholar]
- J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaitre, A. Mertens, M. Sel-vaggi, Journal of High Energy Physics 2014(2), 57. (2014) [Google Scholar]
- E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, K. Krüger, arXiv preprint arXiv:2005.05334 (2020) [Google Scholar]
- R. Di Sipio, M.F. Giannelli, S.K. Haghighat, S. Palazzo, Journal of High Energy Physics, 2019(8), 110. (2019) [Google Scholar]
- P. Musella, F. Pandolfi, Comput Softw Big Sci 2: 8 (2018) [Google Scholar]
- D. Kingma, M. Welling, Foundations and Trends in Machine Learning Vol. 12 (2019) No. 4, pp 307 (2019) [Google Scholar]
- J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, M. Sun, arXiv e-prints arXiv:1812.08434 (2018), 1812.08434 [Google Scholar]
- J. Bruna, W. Zaremba, A. Szlam, Y. LeCun (2013), 1312.6203 [Google Scholar]
- D. Zheng, V. Luo, J. Wu, J.B. Tenenbaum (2018), 1807.09244 [Google Scholar]
- P.W. Battaglia, J.B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner (2018), 1806.01261 [Google Scholar]
- T. Danel, P. Spurek, J. Tabor, M. Smieja, L. Struski, A. Slowik, L. Maziarka, arXiv e-prints, arXiv:1909 (2019) [Google Scholar]
- J. Shlomi, P. Battaglia, J.R. Vlimant, Machine Learning: Science and Technology 2(2, 021001) (2020) [Google Scholar]
- CERN Open Data Portal, http://opendata.cern.ch [Google Scholar]
- M. Andrews, M. Paulini, S. Gleyzer, B. Poczos, Computing and Software for Big Science 4, 1 (2020) [Google Scholar]
- I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016) [Google Scholar]
- W. Hamilton, R. Ying, J. Leskovec, Conference Notes from 31st Conference on Neural Information Processing Systems (2017) [Google Scholar]
- F. Bianchi, D. Grattarola, C. Alippi, Proceedings of Machine Learning Research (2010) [Google Scholar]
- E. Bisong, Google Colaboratory (2019), pp. 59–64, ISBN 978-1-4842-4469-2 [Google Scholar]
- P. Komiske, E. Metodiev, J. Thaler, Physical review letters 123(4), 041801 (2019) [Google Scholar]
- A. Sergeev, M. Del Balso, arXiv preprint arXiv:1802.05799 (2018) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.