Issue |
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
|
|
---|---|---|
Article Number | 03057 | |
Number of page(s) | 10 | |
Section | Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202125103057 | |
Published online | 23 August 2021 |
https://doi.org/10.1051/epjconf/202125103057
Accelerating End-to-End Deep Learning for Particle Reconstruction using CMS open data
1 Department of Physics, Carnegie Mellon University, Pittsburgh, USA
2 Department of Physics, Brown University, Providence, USA
3 Department of Electrical and Electronics Engineering, BITS Pilani, Goa, India
4 Department of Physics and Astronomy, University of Alabama, Tuscaloosa, USA
* e-mail: davide.di.croce@cern.ch
Published online: 23 August 2021
Machine learning algorithms are gaining ground in high energy physics for applications in particle and event identification, physics analysis, detector reconstruction, simulation and trigger. Currently, most data-analysis tasks at LHC experiments benefit from the use of machine learning. Incorporating these computational tools in the experimental framework presents new challenges. This paper reports on the implementation of the end-to-end deep learning with the CMS software framework and the scaling of the end-to-end deep learning with multiple GPUs. The end-to-end deep learning technique combines deep learning algorithms and low-level detector representation for particle and event identification. We demonstrate the end-to-end implementation on a top quark benchmark and perform studies with various hardware architectures including single and multiple GPUs and Google TPU.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.