Open Access
Issue |
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
|
|
---|---|---|
Article Number | 03057 | |
Number of page(s) | 10 | |
Section | Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202125103057 | |
Published online | 23 August 2021 |
- JINST 12, P10003. 82 p (2017) [Google Scholar]
- CMS Physics: Technical Design Report Volume 1: Detector Performance and Software, Technical Design Report CMS (CERN, Geneva, 2006), https://cds.cern. ch/record/922757 [Google Scholar]
- M. Andrews, M. Paulini, S. Gleyzer, B. Poczos, Computing and Software for Big Science 4 (2020), 1807.11916 [Google Scholar]
- M. Andrews, J. Alison, S. An, B. Burkle, S. Gleyzer, M. Narain, M. Paulini, B. Poczos, E. Usai, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 977, 164304 (2020) [Google Scholar]
- K. Albertsson, et al., arXiv e-prints (2018), 1807.02876 [Google Scholar]
- M. Andrews, B. Burkle, D. DiCroce, S. Gleyzer, U. Heintz, M. Narain, M. Paulini, N. Pervan, E. Usai, Submitted to VCHEP2021 (2021) [Google Scholar]
- CMS Collaboration, CMS data preservation, re-use and open access policy (2014), http://opendata.cern.ch/record/411 [Google Scholar]
- CMS Collaboration (2019), http://opendata.cern.ch/record/12200 [Google Scholar]
- CMS Collaboration (2019), http://opendata.cern.ch/record/12201 [Google Scholar]
- CMS Collaboration (2019), http://opendata.cern.ch/record/12202 [Google Scholar]
- CMS Collaboration (2019), http://opendata.cern.ch/record/12203 [Google Scholar]
- Cms software version 5_3_32 (cmssw_5_3_32) (2016), http://opendata.cern.ch/ record/221 [Google Scholar]
- E. Usai, M. Andrews, B. Burkle, S. Gleyzer, M. Narain, CERN Open Data Portal (2019) [Google Scholar]
- M. Cacciari, G.P. Salam, G. Soyez, Journal of High Energy Physics 2008, 063-063 (2008) [Google Scholar]
- K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition (2015), 1512.03385 [Google Scholar]
- D.P. Kingma, J. Ba, Adam: A method for stochastic optimization (2014), 1412.698 [Google Scholar]
- M.A. et al., TensorFlow: Large-scale machine learning on heterogeneous systems (2015), software available from tensorflow.org, http://tensorflow.org/ [Google Scholar]
- A. Sergeev, M.D. Balso, Horovod: fast and easy distributed deep learning in tensorflow (2018), 1802.05799 [Google Scholar]
- NVIDIA Tesla P100: The Most Advanced Data Center Accelerator, accessed: 28 August 2020, https://www.nvidia.com/en-us/data-center/tesla-p100/ [Google Scholar]
- Nvidia v100 | nvidia, accessed: 16 September 2020, https://www.nvidia.com/ en-us/data-center/v100/ [Google Scholar]
- Cloud tensor processing units (tpus), accessed: 30 August 2020, https://cloud. google.com/tpu/docs/tpus [Google Scholar]
- Western Digital DC HA210 Datasheet, 3.5 Inch Data Center Hard Drives [Google Scholar]
- Intel Xeon Silver 4110 Processor (11M Cache, 2.10 GHz) Product Specifications, accessed: 16 September 2020 [Google Scholar]
- Intel xeon gold 5118 processor (16.5m cache, 2.30 ghz) product specifications, accessed: 16 September 2020 [Google Scholar]
- Nvidia dgx-1: Deep learning server for ai research, accessed: 16 September 2020, https://www.nvidia.com/en-us/data-center/dgx-1/ [Google Scholar]
- N.P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers et al. (2017), 1704.04760 [Google Scholar]
- Google Cloud Computing Services, https://cloud.google.com/ [Google Scholar]
- BFloat16: The secret to high performance on Cloud TPUs, https: //cloud.google.com/blog/products/ai-machine-learning/ bfloat16-the-secret-to-high-performance-on-cloud-tpus [Google Scholar]
- Storage classes | google cloud, accessed: 29 September 2020, https://cloud. google.com/compute/docs/disks [Google Scholar]
- Advances in Flash Memory SSD Technology for Enterprise Database Applications, SIGMOD '09 (Association for Computing Machinery, New York, NY, USA, 2009), ISBN 9781605585512, https://doi.org/10.1145/1559845.1559937 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.