Issue |
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
|
|
---|---|---|
Article Number | 06031 | |
Number of page(s) | 8 | |
Section | T6 - Machine learning & analysis | |
DOI | https://doi.org/10.1051/epjconf/201921406031 | |
Published online | 17 September 2019 |
https://doi.org/10.1051/epjconf/201921406031
Exploring End-to-end Deep Learning Applications for Event Classification at CMS
1
Department of Physics, Carnegie Mellon University,
Pittsburgh,
USA
2
Department of Physics, University of Florida,
Gainesville,
USA
3
Machine Learning Department, Carnegie Mellon University,
Pittsburgh,
USA
Published online: 17 September 2019
An essential part of new physics searches at the Large Hadron Collider (LHC) at CERN involves event classification, or distinguishing potential signal events from those coming from background processes. Current machine learning techniques accomplish this using traditional hand-engineered features like particle 4-momenta, motivated by our understanding of particle decay phenomenology. While such techniques have proven useful for simple decays, they are highly dependent on our ability to model all aspects of the phenomenology and detector response. Meanwhile, powerful deep learning algorithms are capable of not only training on high-level features, but of performing feature extraction. In computer vision, convolutional neural networks have become the state-of-the-art for many applications. Motivated by their success, we apply deep learning algorithms to low-level detector data from the 2012 CMS Simulated Open Data to directly learn useful features, in what we call, end-to-end event classification. We demonstrate the power of this approach in the context of a physics search and offer solutions to some of the inherent challenges, such as image construction, image sparsity, combining multiple sub-detectors, and de-correlating the classifier from the search observable, among others.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.