Issue |
EPJ Web Conf.
Volume 288, 2023
ANIMMA 2023 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
|
|
---|---|---|
Article Number | 04006 | |
Number of page(s) | 6 | |
Section | Research Reactors and Particle Accelerators | |
DOI | https://doi.org/10.1051/epjconf/202328804006 | |
Published online | 21 November 2023 |
https://doi.org/10.1051/epjconf/202328804006
Design and fabrication of an axial neutron flux profile measurement assembly for the Advanced Test Reactor Critical Facility
1 Idaho National Laboratory, United States of America
2 Kansas State University, United States of America
* Michael.Reichenberger@INL.gov
Published online: 21 November 2023
Real-time characterization of irradiation facilities improves the utilization of the core capabilities of test nuclear reactors. The ability to observe how the local neutron flux (level and spectrum) changes as control elements and experiments change will fundamentally transform our understanding of the underlying physical phenomena that govern the operation of present and advanced nuclear reactors, ultimately providing valuable information for the nuclear energy industry. The objective of this research was to demonstrate how advanced sensors could be used to significantly reduce the time and cost of experiments, improve our understanding of experimental environments, and enable verification and validation of simulation and modeling methods. This was accomplished by designing and fabricating a dedicated real-time instrument test train for the Advanced Test Reactor Critical (ATR-C) facility. The first year of this project focused on the design and modeling of real-time axial neutron flux monitors, leveraging proven technologies pioneered at the Idaho National Laboratory, to characterize the transient that occurs in the Small-B positions at the Advanced Test Reactor and the Advanced Test Reactor Critical Facility. We found that the flux amplitude in those positions can fluctuate as much as 380% depending on the outer shim control cylinder position. The engineering design of the test fixture and flux monitor instrumentation was the objective of the 2nd project year. New capabilities were established to electrodeposit enriched uranium for fission chamber development at the Idaho National Laboratory and trials were begun to characterize the process. The final year included the fabrication of the test fixture and instruments for Advanced Test Reactor Critical Facility. The fabrication process was delayed by supply chain and personal availability caused by the COVID-19 pandemic. However, we were still able to deliver this unique capability to Advanced Test Reactor Critical Facility that will enable future instrument testing and scientific experiments.
Key words: ATR-C / Fission Chamber / MPFD / Real-Time Neutron Flux Measurement
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.