Issue |
EPJ Web of Conferences
Volume 2, 2010
CNR*09 - Second International Workshop on Compound Nuclear Reactions and Related Topics
|
|
---|---|---|
Article Number | 11001 | |
Number of page(s) | 6 | |
Section | Nuclear Reaction Mechanisms | |
DOI | https://doi.org/10.1051/epjconf/20100211001 | |
Published online | 09 March 2010 |
https://doi.org/10.1051/epjconf/20100211001
Microscopic models for direct inelastic scattering and direct preequilibrium emission: nucleon induced reactions
1
CEA, DAM, DIF, F-91297
Arpajon, France
2
Theoretical Division, Los Alamos National Laboratory,
Los Alamos, New Mexico
87545, USA
3
Université Bordeaux 1, CNRS/IN2P3, Centre d’Etudes Nucléaires de
Bordeaux-Gradignan, F-33175
Gradignan, France
4
Department of Physics and Electronics, Rhodes University,
Grahamstown
6140, South
Africa
a e-mail: marc.dupuis@cea.fr
We have developed microscopic models for nucleon induced inelastic scattering and one-step direct preequilibrium emission. These models are based on reliable effective in-medium two-body interactions and a microscopic description of the ground and excited states of target nuclei. No arbitrary renormalization process enters our analyzes and the predictions are directly compared to experimental data. The nuclear structure information are obtained in the Random Phase Approximation (RPA) framework with the Gogny force, which provides accurate descriptions of spherical nuclei without pairing. For medium energy (50-200 MeV) proton induced reactions, this approach gives very good predictions for direct inelastic scattering and for the first-step in direct preequilibrium emission. The one-step preequilibrium model has also been extended to fast neutron scattering (10-20 MeV) for the 90Zr target described with RPA theory, and for axially deformed nuclei with a simpler description of the excited states (i.e. particle-hole excitations). Predictions of the reaction model reproduce well experimental data for 90Zr. For deformed targets (232Th and 238U), our calculations underestimate the data at high emission energy. The cross section missing for both actinides may stem from the excitation of vibrational states with excitation energies lower than 5 MeV which are not described with incoherent particle-hole excitations. This defect might be cured if the target spectra are described within the Quasi-particle-RPA (QRPA) theory recently implemented with the Gogny force.
© Owned by the authors, published by EDP Sciences, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.