Issue |
EPJ Web of Conferences
Volume 26, 2012
DYMAT 2012 - 10th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 01054 | |
Number of page(s) | 6 | |
Section | Experimental Techniques | |
DOI | https://doi.org/10.1051/epjconf/20122601054 | |
Published online | 31 August 2012 |
https://doi.org/10.1051/epjconf/20122601054
The virtual fields method applied to spalling tests on concrete
1 LMPF, Arts et Metiers ParisTech, Rue St Dominique, BP. 508, 51006 Châlons en Champagne, France
2 LEM3, University of Lorraine, Ile du Saulcy, 57045 Metz Cedex 01, France
a e-mail: fabrice.pierron@ensam.fr
For one decade spalling techniques based on the use of a metallic Hopkinson bar put in contact with a concrete sample have been widely employed to characterize the dynamic tensile strength of concrete at strain-rates ranging from a few tens to two hundreds of s−1. However, the processing method mainly based on the use of the velocity profile measured on the rear free surface of the sample (Novikov formula) remains quite basic and an identification of the whole softening behaviour of the concrete is out of reach. In the present paper a new processing method is proposed based on the use of the Virtual Fields Method (VFM). First, a digital high speed camera is used to record the pictures of a grid glued on the specimen. Next, full-field measurements are used to obtain the axial displacement field at the surface of the specimen. Finally, a specific virtual field has been defined in the VFM equation to use the acceleration map as an alternative ‘load cell’. This method applied to three spalling tests allowed to identify Young’s modulus during the test. It was shown that this modulus is constant during the initial compressive part of the test and decreases in the tensile part when micro-damage exists. It was also shown that in such a simple inertial test, it was possible to reconstruct average axial stress profiles using only the acceleration data. Then, it was possible to construct local stress-strain curves and derive a tensile strength value.
© Owned by the authors, published by EDP Sciences, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.