Issue |
EPJ Web of Conferences
Volume 29, 2012
EMM-FM2011 – First Euro Mediterranean Meeting on Functionalized Materials
|
|
---|---|---|
Article Number | 00018 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/epjconf/20122900018 | |
Published online | 18 June 2012 |
https://doi.org/10.1051/epjconf/20122900018
Effect of Fe substitution on structural and magnetic properties of Pr2Co7-xFex compounds
1
Laboratoire Matériaux Organisation et Propriétés, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia
2
CMTR, ICMPE, UMR7182, CNRS – Université Paris 12, 2-8 rue Henri Dunant F-94320 Thiais, France
a e-mail: FERSI@glvt-cnrs.fr
This work focuses on the synthesis, structure, and magnetic properties of Pr-Co-Fe compounds. Our previous study of Pr2Co7 alloys with high coercivity is shown that for samples annealed at Ta= 800 °C, the main phase is hexagonal of the Ce2Ni7 type structure. This leads to the formation of a magnetically hard Pr2Co7 phase; the coercivity being equal to 18 kOe at 293 K and 23 kOe at 10 K and important saturation magnetization. These performances are due to the combination of the complementary characteristics of 3d-itinerant and 4f-localized magnetism of Co and Pr, respectively. Its Curie temperature is about 600 K. The aim of this study is to follow the effect of partial substitution of Co by Fe on Pr2Co7-xFex structural and magnetic properties, where x =0.25, 0.50, 0.75 and 1. These compounds were synthesized by mechanical alloying. The Rietveld analysis of DRX shows that these intermetallics, annealed at Ta = 700 °C, adopt mainly hexagonal Ce2Ni7 type structure with P63/mmc group space. Moreover, it points out a lattice expansion along the c axis after Fe substitution for Co. Furthermore, these hexagonal phases possess magnetic properties more attractive than Pr2Co7, the Curie temperatures are higher than Pr2Co7 ones and the highest is obtained for x = 0.5 where TC = 760 K. This increase is due to the well-known electronic effect that invokes the reduction of antiferromagnetic coupling. These phases are particularly promising for permanent magnet applications.
© Owned by the authors, published by EDP Sciences, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.