Issue |
EPJ Web of Conferences
Volume 32, 2012
EC-17 – 17th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating
|
|
---|---|---|
Article Number | 02013 | |
Number of page(s) | 6 | |
Section | ECRH and ECCD session | |
DOI | https://doi.org/10.1051/epjconf/20123202013 | |
Published online | 06 September 2012 |
https://doi.org/10.1051/epjconf/20123202013
Monitoring millimeter wave stray radiation during ECRH operation at ASDEX Upgrade
Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, Germany
a e-mail: Martin.Schubert@ipp.mpg.de
b actual affiliation: Universität Stuttgart, 3.Physikalisches Institut, Pfaffenwaldring 57, 70569 Stuttgart, Germany
Due to imperfection of the single path absorption, ECRH at ASDEX Upgrade (AUG) is always accompanied by stray radiation in the vacuum vessel. New ECRH scenarios with O2 and X3 heating schemes extend the operational space, but they have also the potential to increase the level of stray radiation. There are hazards for invessel components. Damage on electric cables has already been encountered. It is therefore necessary to monitor and control the ECRH with respect to the stray radiation level. At AUG a system of Sniffer antennas equipped with microwave detection diodes is installed. The system is part of the ECRH interlock circuit. We notice, however, that during plasma operation the variations of the Sniffer antenna signal are very large. In laboratory measurements we see variations of up to 20 dB in the directional sensitivity and we conclude that an interference pattern is formed inside the copper sphere of the antenna. When ECRH is in plasma operation at AUG, the plasma is acting as a phase and mode mixer for the millimeter waves and thus the interference pattern inside the sphere changes with the characteristic time of the plasma dynamics. In order to overcome the difficulty of a calibrated measurement of the average stray radiation level, we installed bolometer and pyroelectric detectors, which intrinsically average over interference structures due to their large active area. The bolometer provides a robust calibration but with moderate temporal resolution. The pyroelectric detector provides high sensitivity and a good temporal resolution, but it raises issues of possible signal drifts in long pulses.
© Owned by the authors, published by EDP Sciences 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.