Issue |
EPJ Web of Conferences
Volume 45, 2013
EFM12 – Experimental Fluid Mechanics 2012
|
|
---|---|---|
Article Number | 01115 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/epjconf/20134501115 | |
Published online | 09 April 2013 |
https://doi.org/10.1051/epjconf/20134501115
Investigation of viscous fluid flow in an eccentrically deposited annulus using CFD methods
Department of Hydromechanics and Hydraulic Equipment, Faculty of Mechanical Engineering, VŠB-Techn cal University of Ostrava, 17. listopadu 15, Ostrava, Czech Republic
a e-mail: marian.bojko@vsb.cz
The theory of fluid flow in an eccentrically deposited annulus has of great importance especially in the design of sliding bearings (axial, radial). If the geometry is more complex or shaft is deposited eccentrically, then a suitable alternative for design hydrostatic bearing is using ANSYS Fluent, which solves the general three-dimensional viscous fluid flow also in complex geometry. The problem of flow solves in the narrow gap between the cylinders in this paper, when the inner cylinder is stored with a defined eccentricity. The movement of the inner cylinder is composed of two motions (rotation, precession), i.e. rotation around its own axis and move along the circle whose radius is the size of the eccentricity. Addition the pressure gradient is considered in the axial direction. In the introductory section describes the methodology for defining of motions (rotation and precession of the inner cylinder) when the user function (UDF) is created that defines the rotation and move along the circle in C++. The above described methodology of the solution was then applied to the 3D model with a defined pressure drop when the problem was solved as a time-dependent with a time value corresponding to two turns of the internal shaft.
© Owned by the authors, published by EDP Sciences, 2013
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.