Issue |
EPJ Web of Conferences
Volume 50, 2013
TRACER 6 - The 6th International Conference on Tracers and Tracing Methods
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 4 | |
Section | Process Equipment | |
DOI | https://doi.org/10.1051/epjconf/20135001003 | |
Published online | 28 May 2013 |
https://doi.org/10.1051/epjconf/20135001003
Study of solid and liquid behavior in large copper flotation cells (130 m2) using radioactive tracers
1 Nuclear Applications Department, Chile an Commission of Nuclear Energy, PO Box 188-D, Santiago, Chile
2 Chemical and Environmental Engineering Department & CASIM, Federico Santa Maria Technical University, PO Box 110-V, Valparaíso, Chile
The behavior of the solid and liquid phases, in large flotation cells, was characterized by means of the radioactive tracer technique. The use of radioactive tracers enabled the identification of the Residence Time Distribution, of floatable and non-floatable solid, from continuous (on-line) measuring at the output streams of the flotation cells. For this study, the proper radioactive tracers were selected and applied in order to characterize the different phases; i.e. for liquid phase Br-82 as Ammonium Bromide, for floatable solid recovered in the concentrate Cu-64, and for non-floatable solid in three particle size classes (coarse: >150 μm, intermediate: <150 μm and >45 μm, and fine: <45 μm), Na-24. The experimental results confirmed the strong effect of particle size on the Residence Time Distribution, and mean residence time of solids in larger flotation cells, and consequently in flotation hydrodynamics. From a hydrodynamic point of view, the experimental data confirmed that a single mechanical flotation cells, of large size, can deviate significantly from perfect mixing. The experimental work was developed in a 130 m3 industrial flotation cell of the rougher circuit at El Teniente Division, Codelco-Chile.
© Owned by the authors, published by EDP Sciences, 2013
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.