Issue |
EPJ Web of Conferences
Volume 59, 2013
IFSA 2011 – Seventh International Conference on Inertial Fusion Sciences and Applications
|
|
---|---|---|
Article Number | 05009 | |
Number of page(s) | 5 | |
Section | V. Laser and Beam Plasma Interaction | |
DOI | https://doi.org/10.1051/epjconf/20135905009 | |
Published online | 15 November 2013 |
https://doi.org/10.1051/epjconf/20135905009
Optimal control of laser plasma instabilities using Spike Trains of Uneven Duration and Delay (STUD pulses) for ICF and IFE
1 Polymath Research Inc., Pleasanton, CA 94566, USA
2 Centre de Physique Théorique, CNRS, Ecole Polytechnique, Palaiseau, France
a e-mail: bafeyan@gmail.com
Published online: 15 November 2013
An adaptive method of controlling parametric instabilities in laser produced plasmas is proposed. It involves fast temporal modulation of a laser pulse on the fastest instability's amplification time scale, adapting to changing and unknown plasma conditions. These pulses are comprised of on and off sequences having at least one or two orders of magnitude contrast between them. Such laser illumination profiles are called STUD pulses for Spike Trains of Uneven Duration and Delay. The STUD pulse program includes scrambling the speckle patterns spatially in between the laser spikes. The off times allow damping of driven waves. The scrambling of the hot spots allows tens of damping times to elapse before hot spot locations experience recurring high intensity spikes. Damping in the meantime will have healed the scars of past growth. Another unique feature of STUD pulses on crossing beams is that their temporal profiles can be interlaced or staggered, and their interactions thus controlled with an on-off switch and a dimmer.
© Owned by the authors, published by EDP Sciences, 2013
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.