Issue |
EPJ Web of Conferences
Volume 59, 2013
IFSA 2011 – Seventh International Conference on Inertial Fusion Sciences and Applications
|
|
---|---|---|
Article Number | 17003 | |
Number of page(s) | 4 | |
Section | XVII. Ultra-High Intensity Laser-Matter Interaction | |
DOI | https://doi.org/10.1051/epjconf/20135917003 | |
Published online | 15 November 2013 |
https://doi.org/10.1051/epjconf/20135917003
Double ionization effect in electron accelerations by high-intensity laser pulse interaction with a neutral gas
Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India
a e-mail: dngupta@physics.du.ac.in
Published online: 15 November 2013
We study the effect of laser-induced double-ionization of a helium gas (with inhomogeneous density profile) on vacuum electron acceleration. For enough laser intensity, helium gas can be found doubly ionized and it strengthens the divergence of the pulse. The double ionization of helium gas can defocus the laser pulse significantly, and electrons are accelerated by the front of the laser pulse in vacuum and then decelerated by the defocused trail part of the laser pulse. It is observed that the electrons experience a very low laser-intensity at the trailing part of the laser pulse. Hence, there is not much electron deceleration at the trailing part of the pulse. We found that the inhomogeneity of the neutral gas reduced the rate of tunnel ionization causing less defocusing of the laser pulse and thus the electron energy gain is reduced.
© Owned by the authors, published by EDP Sciences, 2013
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.