Issue |
EPJ Web of Conferences
Volume 61, 2013
The Innermost Regions of Relativistic Jets and Their Magnetic Fields
|
|
---|---|---|
Article Number | 08001 | |
Number of page(s) | 5 | |
Section | AGN jets | |
DOI | https://doi.org/10.1051/epjconf/20136108001 | |
Published online | 09 December 2013 |
https://doi.org/10.1051/epjconf/20136108001
The X-ray emission mechanism of large scale powerful quasar jets: Fermi rules out IC/CMB for 3C 273.
1 Department of Physics Department, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore MD 21250, USA
2 NASA Goddard Space Flight Center, Code 660, Greenbelt, MD 20771, USA
3 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
a e-mail: georgano@umbc.edu
b e-mail: meyer@stsci.edu
Published online: 9 December 2013
The process responsible for the Chandra-detected X-ray emission from the large-scale jets of powerful quasars is not clear yet. The two main models are inverse Compton scattering off the cosmic microwave background photons (IC/CMB) and synchrotron emission from a population of electrons separate from those producing the radio-IR emission. These two models imply radically different conditions in the large scale jet in terms of jet speed, kinetic power, and maximum energy of the particle acceleration mechanism, with important implications for the impact of the jet on the larger-scale environment. Georganopoulos et al. (2006) proposed a diagnostic based on a fundamental difference between these two models: the production of synchrotron X-rays requires multi-TeV electrons, while the EC/CMB model requires a cutoff in the electron energy distribution below TeV energies. This has significant implications for the γ-ray emission predicted by these two models. Here we present new Fermi observations that put an upper limit on the gamma-ray flux from the large-scale jet of 3C 273 that clearly violates the flux expected from the IC/CMB X-ray interpretation found by extrapolation of the UV to X-ray spectrum of knot A, thus ruling out the IC/CMB interpretation entirely for this source. Further, the upper limit from Fermi puts a limit on the Doppler beaming factor of at least δ <9, assuming equipartition fields, and possibly as low as δ <5 assuming no major deceleration of the jet from knots A through D1.
© Owned by the authors, published by EDP Sciences, 2013
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.