Issue |
EPJ Web of Conferences
Volume 69, 2014
CNR*13 - Fourth International Workshop on Compound Nuclear Reactions and Related Topics
|
|
---|---|---|
Article Number | 00009 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/epjconf/20136900009 | |
Published online | 01 April 2014 |
https://doi.org/10.1051/epjconf/20136900009
Few-body semiclassical approach to nucleon transfer and emission reactions
Department of Information Systems & Integrated Science and Engineering Laboratory Facilities (ISELF), St. Cloud State University, St. Cloud, MN 56301-4498, USA
a e-mail: rasultanov@stcloudstate.edu
b e-mail: dcguster@stcloudstate.edu
Published online: 1 April 2014
A three-body semiclassical model is proposed to describe the nucleon transfer and emission reactions in a heavy-ion collision. In this model the two heavy particles, i.e. nuclear cores A1(ZA1, MA1) and A2(ZA2, MA2), move along classical trajectories and
respectively, while the dynamics of the lighter neutron (n) is considered from a quantum mechanical point of view. Here, Mi are the nucleon masses and Zi are the Coulomb charges of the heavy nuclei (i = 1, 2). A Faddeev-type semiclassical formulation using realistic paired nuclear-nuclear potentials is applied so that all three channels (elastic, rearrangement and break-up) are described in a unified manner. In order to solve the time-dependent equations the Faddeev components of the total three-body wave-function are expanded in terms of the input and output channel target eigenfunctions. In the special case, when the nuclear cores are identical (A1 ≡ A2) and also the two-level approximation in the expansion over the target (subsystem) functions is used, the time-dependent semiclassical Faddeev equations are resolved in an explicit way. To determine the realistic
and
trajectories of the nuclear cores, a self-consistent approach based on the Feynman path integral theory is applied.
© Owned by the authors, published by EDP Sciences, 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.