Issue |
EPJ Web of Conferences
Volume 75, 2014
JEMS 2013 – Joint European Magnetic Symposia
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 4 | |
Section | 3. Magnetism in metal alloys and intermetallics | |
DOI | https://doi.org/10.1051/epjconf/20147503002 | |
Published online | 03 July 2014 |
https://doi.org/10.1051/epjconf/20147503002
Modelling of Packed Co Nanorods for Hard Magnetic Applications
Institute of Solid State Physics, Vienna University of Technology, 1040 Vienna, Austria
a Corresponding author: peter.toson@tuwien.ac.at
Published online: 3 July 2014
We present a numerical algorithm based on the bullet physics library to generate densely packed (39% - 41%) structures of high-aspect-ratio nanorods for finite element micromagnetic simulations. The coercivities µ0Hc of the corresponding Cobalt nanorod structures vary between 0.50T and 0.67T, depending on the overall orientation of nanorods, which is in good agreement with experimental results. The simulations make it possible to estimate the coercivity loss due to incoherent reversal processes (27%) as well as the gain due to shape anisotropy (59%). Our calculations show permanent magnets consisting of packed Co nanorods with an energy density product (BH)max of 83kJ/m3. We estimate that this value can be increased to 103kJ/m3 by increasing the packing density from 40% to 45%. Another way to optimize (BH)max is the usage of novel materials. By varying the anisotropy constant K1 and the saturation polarisation JS we found lower limits for these parameters to reach a certain energy density product. To increase (BH)max to 160 kJ/m3, K1 and JS have to be in the order of 450kJ/m3 and 2.25T, respectively. The thermal stability of this approach was verified by elastic band calculations. Cobalt nanorods with a diameter of 10nm and a height of 50nm are thermally stable at room temperature, but problematic at 900K. Doubling the nanorods' height to 100nm increases that limit considerably.
© Owned by the authors, published by EDP Sciences, 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.