Issue |
EPJ Web of Conferences
Volume 75, 2014
JEMS 2013 – Joint European Magnetic Symposia
|
|
---|---|---|
Article Number | 04011 | |
Number of page(s) | 4 | |
Section | 4. Magnetic materials for energy | |
DOI | https://doi.org/10.1051/epjconf/20147504011 | |
Published online | 03 July 2014 |
https://doi.org/10.1051/epjconf/20147504011
Magnetostriction of fcc(110) single-crystal films of Ni-Fe, Ni, and Co under rotating magnetic fields
Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
a Corresponding author: futamoto@elect.chuo-u.ac.jp
Published online: 3 July 2014
Ni-Fe, Ni, and Co(110) single-crystal films with uniaxial magnetic anisotropies are prepared on MgO(110) substrates by radio-frequency magnetron sputtering. The magnetostriction behavior under rotating magnetic fields is investigated. The Ni-Fe film shows waveforms consisting of a mixture of sinusoidal and triangular shapes under fields lower than 200 Oe. The peak of sinusoidal shape is observed when the field is applied along the easy magnetization axis, whereas that of triangular shape appears when the field is applied along the hard axis. With increasing the field from 200 to 300 Oe, the waveform changes to a usual sinusoidal shape. The waveform variation is related to the difference between the directions of uniaxial magnetic anisotropy and magnetization of magnetically unsaturated film. Waveforms consisting of sinusoidal and triangular shapes are also observed for the Ni and the Co films under low rotating fields. The threshold magnetic field where the shape changes to sinusoidal increases in the order of Ni-Fe < Ni < Co. The waveform is influenced by the symmetry and the strength of magnetic anisotropy.
© Owned by the authors, published by EDP Sciences, 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.