Issue |
EPJ Web of Conferences
Volume 89, 2015
AtmoHEAD 2014: Atmospheric Monitoring for High Energy AstroParticle Detectors
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 5 | |
Section | Instruments and Methods | |
DOI | https://doi.org/10.1051/epjconf/20158903001 | |
Published online | 26 March 2015 |
https://doi.org/10.1051/epjconf/20158903001
Thin and thick cloud top height retrieval algorithm with the Infrared Camera and LIDAR of the JEM-EUSO Space Mission
1 Space & Astroparticle Group, UAH, Madrid, Spain
2 ISDC, Astronomy Dept. University of Geneva, Switzerland
3 RIKEN Advanced Science Institute, Japan
a e-mail: lupe.saez@uah.es
Published online: 26 March 2015
The origin of cosmic rays have remained a mistery for more than a century. JEM-EUSO is a pioneer space-based telescope that will be located at the International Space Station (ISS) and its aim is to detect Ultra High Energy Cosmic Rays (UHECR) and Extremely High Energy Cosmic Rays (EHECR) by observing the atmosphere. Unlike ground-based telescopes, JEM-EUSO will observe from upwards, and therefore, for a properly UHECR reconstruction under cloudy conditions, a key element of JEM-EUSO is an Atmospheric Monitoring System (AMS). This AMS consists of a space qualified bi-spectral Infrared Camera, that will provide the cloud coverage and cloud top height in the JEM-EUSO Field of View (FoV) and a LIDAR, that will measure the atmospheric optical depth in the direction it has been shot. In this paper we will explain the effects of clouds for the determination of the UHECR arrival direction. Moreover, since the cloud top height retrieval is crucial to analyze the UHECR and EHECR events under cloudy conditions, the retrieval algorithm that fulfills the technical requierements of the Infrared Camera of JEM-EUSO to reconstruct the cloud top height is presently reported.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.