Issue |
EPJ Web of Conferences
Volume 94, 2015
DYMAT 2015 - 11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 02008 | |
Number of page(s) | 5 | |
Section | Microstructural Effects | |
DOI | https://doi.org/10.1051/epjconf/20159402008 | |
Published online | 07 September 2015 |
https://doi.org/10.1051/epjconf/20159402008
High-power laser shock-induced dynamic fracture of aluminum and microscopic observation of samples
1 Shanghai Institute of Laser Plasma(SILP), ShangHai 201800, China
2 Materials Research Institute, China Academy of Engineering Physics, MianYang 621900, China
a Corresponding author: innocentman001@163.com
Published online: 7 September 2015
High-power laser induced shocks generated by “ShenGuang II” laser facility has been used to study spall fracture of polycrystalline aluminum at strain rates more than 106/s. The free surface velocity histories of shock-loaded samples, 150 μm thick and with initial temperature from 293 K to 873 K, have been recorded using velocity interferometer system for any reflector (VISAR). From the free surface velocity profile, spall strength and yield stress are calculated, it demonstrates that spall strength will decline and yield strength increase with initial temperature. The loaded samples are recovered to obtain samples' section and free surface metallographic pictures through Laser Scanning Confocal Microscopy. It is found that there are more micro-voids and more opportunity to appear bigger voids near the spall plane and the grain size increases with temperature slowly but smoothly except the sharply change at 893 K (near melting point). Besides, the fracture mechanisms change from mainly intergranular fracture to transgranular fracture with the increase of initial temperature.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.