Issue |
EPJ Web of Conferences
Volume 94, 2015
DYMAT 2015 - 11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 4 | |
Section | Modeling and Numerical Simulation | |
DOI | https://doi.org/10.1051/epjconf/20159404003 | |
Published online | 07 September 2015 |
https://doi.org/10.1051/epjconf/20159404003
Overstress and flowstress approaches to dynamic viscoplasticity
Retired from RAFAEL, Israel
a Corresponding author: ypartom@netvision.net.il
Published online: 7 September 2015
Viscoplasticity is mostly modelled by the flowstress approach, where the flowstress (Y) is a function of pressure, temperature, plastic strain and strain rate Y(P,T, εp, ε̇). For dynamic Viscoplasticity the flowstress approach is used in hydrocodes together with the radial return algorithm, to determine deviatoric stress components in each computational cell and for each time step. The flowstress approach assumes that during plastic loading, the flowstress in stress space follows the current stress point (current Y). Unloading of a computational cell is therefore always elastic. The overstress approach to dynamic viscoplasticity was used in various versions in the 1950s and early 1960s, before the advent of hydrocodes. By the overstress approach a state point may move out of the quasistatic flow surface upon loading, and hence the term overstress. When this happens, the state point tends to fall back (or relax) onto the quasistatic flow surface through plastic flow, and the rate of this relaxation is an increasing function of the amount of overstress. In the paper we first outline in detail how these two approaches to dynamic viscoplasticity work, and then show an example for which the overstress approach has an advantage over the flowstress approach. The example has to do with elastic precursor decay in planar impact, and with the phenomenon of anomalous thermal strengthening, revealed recently in planar impact tests. The overstress approach has an advantage whenever plastic flow during unloading is of importance.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.