Issue |
EPJ Web of Conferences
Volume 94, 2015
DYMAT 2015 - 11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 04037 | |
Number of page(s) | 4 | |
Section | Modeling and Numerical Simulation | |
DOI | https://doi.org/10.1051/epjconf/20159404037 | |
Published online | 07 September 2015 |
https://doi.org/10.1051/epjconf/20159404037
Theoretical study of the porosity effects on the shock response of graphitic materials
1 CEA/DAM/DIF, 91297 Arpajon, France
2 CEA/DAM/CESTA, 33116 Le Barp, France
a Corresponding author: nicolas.pineau@cea.fr
Published online: 7 September 2015
In this paper we present a theoretical study of the shock compression of porous graphite by means of combined Monte Carlo and molecular dynamics simulations using the LCBOPII potential. The results show that the Hugoniostat methods can be used with “pole” properties calculated from porous models to reproduce the experimental Hugoniot of pure graphite and diamond with good accuracy. The computed shock temperatures show a sharp increase for weak shocks which we analyze as the heating associated with the closure of the initial porosity. After this initial phase, the temperature increases with shock intensity at a rate comparable to monocrystalline graphite and diamond. These simulations data can be exploited in view to build a full equation of state for use in hydrodynamic simulations.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.