Issue |
EPJ Web of Conferences
Volume 94, 2015
DYMAT 2015 - 11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 04047 | |
Number of page(s) | 5 | |
Section | Modeling and Numerical Simulation | |
DOI | https://doi.org/10.1051/epjconf/20159404047 | |
Published online | 07 September 2015 |
https://doi.org/10.1051/epjconf/20159404047
Numerical study on dynamic compressive deformation and elasto-plastic wave propagation of foam materials
1 Grad. Sch. of Eng. Sci., Osaka University, Toyonaka, Osaka, Japan
2 Space Dynamics Lab. Kyoto, Kyoto, Japan
a Corresponding author: tanigaki@me.es.osaka-u.ac.jp
Published online: 7 September 2015
Finite element models of closed-cell foam structures were created using the three-dimensional Voronoi tessellation method coupled with the random sequential addition algorithm. The dynamic compressive deformation behaviors of the models were numerically studied using LS-DYNA code. The deformation mode of the models changed gradually as the deformation rate increases. Also, the generation and the propagation of plastic wave was clearly observed with the rate of 100 m/s. The longitudinal elastic wave velocity showed a weak negative dependency on the deformation rate although the strain rate dependence of material properties was not considered. Furthermore, a prediction method for the dynamic stress state on the impact side based on the static stress-strain relationship was presented.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.