Issue |
EPJ Web of Conferences
Volume 100, 2015
Theoretical and Experimental Studies in Nuclear Applications and Technology (TESNAT 2015)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 4 | |
Section | Medical Physics | |
DOI | https://doi.org/10.1051/epjconf/201510003001 | |
Published online | 09 July 2015 |
https://doi.org/10.1051/epjconf/201510003001
Dosimetric comparison of tools for intensity modulated radiation therapy with gamma analysis: a phantom study
1 Istanbul University, Oncology Institute, Department of Medical Physics, Istanbul, Turkey
2 Istanbul University, Science Faculty, Department of Physics, Istanbul, Turkey
a Corresponding author: u.akbas@yahoo.com
Published online: 9 July 2015
Dosimetry of the Intensity Modulated Radiation Therapy (IMRT) is very important because of the complex dose distributions. Diode arrays are the most common and practical measurement tools for clinical usage for IMRT. Phantom selection is critical for QA process. IMRT treatment plans are recalculated for the phantom irradiation in QA. Phantoms are made in different geometrical shapes to measure the doses of different types of irradiation techniques. Comparison of measured and calculated dose distributions for IMRT can be made by using gamma analysis. In this study, 10 head-and-neck IMRT QA plans were created with Varian Eclipse 8.9 treatment planning system. Water equivalent RW3-slab phantoms, Octavius-2 phantom and PTW Seven29 2D-array were used for QA measurements. Gantry, collimator and couch positions set to 00 and QA plans were delivered to RW3 and Octavius phantoms. Then the positions set to original angles and QA plans irradiated again. Measured and calculated fluence maps were evaluated with gamma analysis for different DD and DTA criteria. The effect of different set-up conditions for RW3 and Octavius phantoms in QA plan delivery evaluated by gamma analysis. Results of gamma analysis show that using RW3-slab phantoms with setting parameters to 00 is more appropriate for IMRT QA.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.