Issue |
EPJ Web of Conferences
Volume 108, 2016
Mathematical Modeling and Computational Physics (MMCP 2015)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 12 | |
Section | Plenary and Invited Lectures | |
DOI | https://doi.org/10.1051/epjconf/201610801004 | |
Published online | 09 February 2016 |
https://doi.org/10.1051/epjconf/201610801004
Centrosymmetric Matrices in the Sinc Collocation Method for Sturm-Liouville Problems
Mathematical Section, Faculté Saint-Jean, University of Alberta, 8406, 91 Street, Edmonton, Alberta, T6C 4G9, Canada
a e-mail: hsafouhi@ualberta.ca
Published online: 9 February 2016
Recently, we used the Sinc collocation method with the double exponential transformation to compute eigenvalues for singular Sturm-Liouville problems. In this work, we show that the computation complexity of the eigenvalues of such a differential eigenvalue problem can be considerably reduced when its operator commutes with the parity operator. In this case, the matrices resulting from the Sinc collocation method are centrosymmetric. Utilizing well known properties of centrosymmetric matrices, we transform the problem of solving one large eigensystem into solving two smaller eigensystems. We show that only 1/(N+1) of all components need to be computed and stored in order to obtain all eigenvalues, where 2N + 1 corresponds to the dimension of the eigensystem. We applied our result to the Schrödinger equation with the anharmonic potential and the numerical results section clearly illustrates the substantial gain in effciency and accuracy when using the proposed algorithm.
Key words: Sinc collocation method / Centrosymmetry / Sturm-Liouville eigenvalue problem / Schrödinger equation / Anharmonic oscillators
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.