Issue |
EPJ Web of Conferences
Volume 108, 2016
Mathematical Modeling and Computational Physics (MMCP 2015)
|
|
---|---|---|
Article Number | 02032 | |
Number of page(s) | 6 | |
Section | Conference Contributions | |
DOI | https://doi.org/10.1051/epjconf/201610802032 | |
Published online | 09 February 2016 |
https://doi.org/10.1051/epjconf/201610802032
Numerical Evaluation of 2D Ground States
Institute of Mathematics and Informatics, BAS, acad, Bonchev str., bl.8, Sofia, Bulgaria
a e-mail: natali@math.bas.bg
Published online: 9 February 2016
A ground state is defined as the positive radial solution of the multidimensional nonlinear problem with the function f being either f(u) =a|u|p–1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem.
The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10–11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.