Issue |
EPJ Web of Conferences
Volume 108, 2016
Mathematical Modeling and Computational Physics (MMCP 2015)
|
|
---|---|---|
Article Number | 02034 | |
Number of page(s) | 6 | |
Section | Conference Contributions | |
DOI | https://doi.org/10.1051/epjconf/201610802034 | |
Published online | 09 February 2016 |
https://doi.org/10.1051/epjconf/201610802034
Spinor-Like Hamiltonian for Maxwellian Optics
1 Department of Applied Probability and Informatics, Peoples’ Friendship University of Russia, Miklukho-Maklaya str. 6, Moscow, 117198, Russia
2 Laboratory of Information Technologies, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow region, 141980, Russia
a e-mail: yamadharma@gmail.com
Published online: 9 February 2016
Background. Spinors are more special objects than tensors. Therefore spinors possess more properties than the more generic objects such as tensors. The group of Lorentz two-spinors is the covering group of the Lorentz group.
Purpose. Since the Lorentz group is the symmetry group of Maxwell equations, it is reasonable to use Lorentz two-spinors and not tensors when writing the Maxwell equations.
Method. We write the Maxwell equations using Lorentz two-spinors. Also a convenient representation of Lorentz two-spinors in terms of the Riemann-Silberstein complex vectors is used.
Results. In the spinor formalism (in the representation of the Lorentz spinors and Riemann-Silberstein vectors) we have constructed the Hamiltonian of Maxwellian optics. With the use of spinors, the Maxwell equations take a form similar to the Dirac equation.
Conclusions. For Maxwell equations in the Dirac-like form we can expand research methods by means of quantum field theory. In this form, the connection between the Hamiltonians of geometric, beam and Maxwellian optics is clearly visible.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.