Issue |
EPJ Web of Conferences
Volume 108, 2016
Mathematical Modeling and Computational Physics (MMCP 2015)
|
|
---|---|---|
Article Number | 02044 | |
Number of page(s) | 4 | |
Section | Conference Contributions | |
DOI | https://doi.org/10.1051/epjconf/201610802044 | |
Published online | 09 February 2016 |
https://doi.org/10.1051/epjconf/201610802044
Statistical Properties of Thermal Noise Driving the Brownian Particles in Fluids
1 Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Park Komenského 2, 042 00, Košice, Slovakia
2 Laboratory of Radiation Biology, Joint Institute for Nuclear Research, 141980, Dubna, Moscow Region, Russia
a e-mail: jana.tothova@tuke.sk
b e-mail: vladimir.lisy@tuke.sk
Published online: 9 February 2016
In several recent works high-resolution interferometric detection allowed to study the Brownian motion of optically trapped microparticles in air and fluids. The observed positional fluctuations of the particles are well described by the generalized Langevin equation with the Boussinesq-Basset “history force” instead of the Stokes friction, which is valid only for the steady motion. Recently, also the time correlation function of the thermal random force Fth driving the Brownian particles through collisions with the surrounding molecules has been measured. In the present contribution we propose a method to describe the statistical properties of Fth in incompressible fluids. Our calculations show that the time decay of the correlator 〈Fth(t)Fth(0)〉 is significantly slower than that found in the literature. It is also shown how the “color” of the thermal noise can be determined from the measured positions of the Brownian particles.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.