Issue |
EPJ Web of Conferences
Volume 109, 2016
The 13th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG2015)
|
|
---|---|---|
Article Number | 05001 | |
Number of page(s) | 10 | |
Section | Theoretical Nuclear Physics for Astrophysics | |
DOI | https://doi.org/10.1051/epjconf/201610905001 | |
Published online | 12 February 2016 |
https://doi.org/10.1051/epjconf/201610905001
Projected shell model for Gamow-Teller transitions in heavy, deformed nuclei
1 Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
3 China Institute of Atomic Energy, P.O. Box 275(18), Beijing 102413, China
4 State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
a e-mail: sunyang@sjtu.edu.cn
Published online: 12 February 2016
Calculations of Gamow-Teller (GT) transition rates for heavy, deformed nuclei, which are useful input for nuclear astrophysics studies, are usually done with the quasiparticle random-phase approximation. We propose a shell-model method by applying the Projected Shell Model (PSM) based on deformed bases. With this method, it is possible to perform a state-by-state calculation for nuclear matrix elements for β-decay and electron-capture in heavy nuclei. Taking β− decay from 168Dy to 168Ho as an example, we show that the known experimental B(GT) from the ground state of the mother nucleus to the low-lying states of the daughter nucleus could be well described. Moreover, strong transitions to high-lying states are predicted to occur, which may considerably enhance the total decay rates once these nuclei are exposed to hot stellar environments.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.