Issue |
EPJ Web Conf.
Volume 113, 2016
21st International Conference on Few-Body Problems in Physics
|
|
---|---|---|
Article Number | 06012 | |
Number of page(s) | 4 | |
Section | Nuclear Structure and Reactions | |
DOI | https://doi.org/10.1051/epjconf/201611306012 | |
Published online | 25 March 2016 |
https://doi.org/10.1051/epjconf/201611306012
Momentum distributions in light halo nuclei and structure constraints
1 Instituto Tecnológico de Aeronáutica, DCTA, 12228-900, São José dos Campos, Brazil
2 Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
3 Instituto de Fomento e Coordenação Industrial, 12228-901, São José dos Campos, SP, Brazil
4 Instituto de Física Teórica, UNESP, 01156-970, São Paulo, Brazil
5 CCNH, Universidade Federal do ABC, 09210-580, Santo André, Brazil
a e-mail: lucasufsj@gmail.com
b e-mail: ffbellotti@gmail.com
c e-mail: tobias@ita.br
d e-mail: yamashita@ift.unesp.br
e e-mail: tomio@ift.unesp.br
Published online: 25 March 2016
The core recoil momentum distribution of neutron-rich isotopes of light exotic nuclei is studied within a three-body model, where the nuclei are described by a core and two neutrons, with interactions dominated by the s-wave channel. In our framework, the two-body subsystems should have large scattering lengths in comparison with the interaction range allowing to use a three-body model with a zero-range force. The ground-state halo wave functions in momentum space are obtained by using as inputs the two-neutron separation energy and the energies of the singlet neutron-neutron and neutron-core virtual states. Within our model, we obtain the momentum probability densities for the Borromean exotic nuclei 11Li and 22C. In the case of the core recoil momentum distribution of 11Li, a fair reproduction of the experimental data was obtained, without free parameters, considering only the two-body low-energies. By analysing the obtained core momentum distribution in face of recent experimental data, we verify that such data are constraining the 22C two-neutron separation energy to a value between 100 and 400 keV.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.