Issue |
EPJ Web of Conferences
Volume 114, 2016
EFM15 – Experimental Fluid Mechanics 2015
|
|
---|---|---|
Article Number | 02009 | |
Number of page(s) | 4 | |
Section | Contributions | |
DOI | https://doi.org/10.1051/epjconf/201611402009 | |
Published online | 28 March 2016 |
https://doi.org/10.1051/epjconf/201611402009
Comparison of methods for flow border detection in images of smoke visualization
Brno University of Technology, Faculty of Mechanical Engineering, Technicka 2896/2, 616 69 Brno, Czech Republic
a Corresponding author: petr.caletka@vutbr.cz
Published online: 28 March 2016
A separation of the flow region from the surroundings is an essential step in the analysis of smoke visualization images. The separation can be performed using several detection methods from the image segmentation group. This paper deals with the border detection of the air flow downstream of a benchmark automotive vent using different threshold-based detection methods. An assessment of the methods on the basis of the resulting image quality is also addressed. The quality level depends on the quantity and brightness of disturbances in the background area. The disturbance is usually an isolated region of smoke, which naturally cannot be a part of the flow. Three representative images of different quality levels were selected for the detection, and three methods were used for the evaluation. Each of the methods was used to determine the threshold differently (by the level, by the ratio, and by the change of brightness). It is demonstrated that the change-based method with an appropriately selected parameter is the most convenient for images with the worst quality level while level- and ratio-based methods are only applicable for images of good quality.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.