Issue |
EPJ Web of Conferences
Volume 114, 2016
EFM15 – Experimental Fluid Mechanics 2015
|
|
---|---|---|
Article Number | 02022 | |
Number of page(s) | 8 | |
Section | Contributions | |
DOI | https://doi.org/10.1051/epjconf/201611402022 | |
Published online | 28 March 2016 |
https://doi.org/10.1051/epjconf/201611402022
A non-intrusive and continuous-in-space technique to investigate the wave transformation and breaking over a breakwater
DICAAR - Dipartimento di Ingegneria Civile, Ambientale e Architettura, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy
a Corresponding author: ferraris@unica.it
Published online: 28 March 2016
To design longshore breakwaters, the evaluation of the wave motion transformations over the structures and of the energy they are able to absorb, dissipate and reflect is necessary. To characterize features and transformations of monochromatic wave trains above a breakwater, both submerged and emerged, we have designed and developed a non-intrusive and continuous-in-space technique, based on Image Analysis, and carried out an experimental campaign, in a laboratory flume equipped with a wave-maker, in order to test it. The investigation area was lighted with a light sheet and images were recorded by a video-camera. The working fluid was seeded with non buoyant particles to make it bright and clearly distinct from dark background and breakwater. The technique, that is based on a robust algorithm to identify the free surface, has showed to properly work also in prohibitive situations for traditional resistive probes (e.g., very shallow waters and/or breaking waves) and to be able to measure the free surface all over the investigation field in a non-intrusive way. Two kind of analysis were mainly performed, a statistical and a spectral one. The peculiarities of the measurement technique allowed to describe the whole wave transformation and to supply useful information for design purposes.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.