Issue |
EPJ Web of Conferences
Volume 116, 2016
Very Large Volume Neutrino Telescope (VLVnT-2015)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 5 | |
Section | Photon Detection Technique | |
DOI | https://doi.org/10.1051/epjconf/201611601002 | |
Published online | 11 April 2016 |
https://doi.org/10.1051/epjconf/201611601002
The KM3NeT Digital Optical Module
1 University of Naples “Federico II”, Department of Physics, via Cintia, 80126 Naples, Italy
2 INFN – Istituto Nazionale di Fisica Nucleare, Section of Naples, via Cintia, 80126 Naples, Italy
Published online: 11 April 2016
KM3NeT is a European deep-sea multidisciplinary research infrastructure in the Mediterranean Sea. It will host a km3-scale neutrino telescope and dedicated instruments for long-term and continuous measurements for Earth and Sea sciences. The KM3NeT neutrino telescope is a 3-dimensional array of Digital Optical Modules, suspended in the sea by means of vertical string structures, called Detection Units, supported by two pre-stretched Dyneema ropes, anchored to the seabed and kept taut with a system of buoys. The Digital Optical Module represents the active part of the neutrino telescope. It is composed by a 17-inch, 14 mm thick borosilicate glass (Vitrovex) spheric vessel housing 31 photomultiplier tubes with 3-inch photocathode diameter and the associated front-end and readout electronics. The technical solution adopted for the KM3NeT optical modules is characterized by an innovative design, considering that existing neutrino telescopes, Baikal, IceCube and ANTARES, all use large photomultipliers, typically with a diameter of 8″ or 10″. It offers several advantages: higher sensitive surface (1260 cm2), weaker sensitivity to Earth's magnetic field, better distinction between single-photon and multi-photon events (photon counting) and directional information with an almost isotropic field of view. In this contribution the design and the performance of the KM3NeT Digital Optical Modules are discussed, with a particular focus on enabling technologies and integration procedure.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.