Issue |
EPJ Web of Conferences
Volume 119, 2016
The 27th International Laser Radar Conference (ILRC 27)
|
|
---|---|---|
Article Number | 16008 | |
Number of page(s) | 4 | |
Section | Poster Session (Lidar Cloud Studies) | |
DOI | https://doi.org/10.1051/epjconf/201611916008 | |
Published online | 07 June 2016 |
https://doi.org/10.1051/epjconf/201611916008
Study of Droplet Activation in Thin Clouds Using Ground-Based Raman Lidar and Ancillary Remote Sensors
Consiglio Nazionale delle Ricerche (CNR), Istituto di Metodologie per l’Analisi Ambientale (IMAA),
C.da S. Loia, I-85050, Tito Scalo, Potenza, Italy
* Email: marco.rosoldi@imaa.cnr.it
Published online: 7 June 2016
A methodology for the study of cloud droplet activation based on the measurements performed with ground-based multi-wavelength Raman lidars and ancillary remote sensors collected at CNR-IMAA observatory, Potenza, South Italy, is presented. The study is focused on the observation of thin warm clouds. Thin clouds are often also optically thin: this allows the cloud top detection and the full profiling of cloud layers using ground-based Raman lidar. Moreover, broken clouds are inspected to take advantage of their discontinuous structure in order to study the variability of optical properties and water vapor content in the transition from cloudy regions to cloudless regions close to the cloud boundaries. A statistical study of this variability leads to identify threshold values for the optical properties, enabling the discrimination between clouds and cloudless regions. These values can be used to evaluate and improve parameterizations of droplet activation within numerical models. A statistical study of the co-located Doppler radar moments allows to retrieve droplet size and vertical velocities close to the cloud base. First evidences of a correlation between droplet vertical velocities measured at the cloud base and the aerosol effective radius observed in the cloud-free regions of the broken clouds are found.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.